Skip to main content
Log in

Performance Investigation of Bottom Gate ZnO Based TFT for High-Speed Digital Display Circuit Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

This paper explores possibility of device as well as circuit performance enhancement in the bottom gate \({\text{ZnO}}\) based TFT via Mg and Cd material doping. DC, Analog & RF performance, Energy efficiency and Noise analysis were performed for both doped (i.e., \({{\text{Mg}}}_{{\text{y}}}{{\text{Zn}}}_{1-{\text{y}}}{\text{O}}\) and \({{\text{Cd}}}_{{\text{x}}}{{\text{Zn}}}_{1-{\text{x}}}{\text{O}}\)) and undoped \({\text{ZnO}}\) channel TFT structures. Further, successful circuit implementation of these devices was done in resistive inverter and AMLCD pixel display circuits. Performance wise both \({{\text{Mg}}}_{{\text{y}}}{{\text{Zn}}}_{1-{\text{y}}}{\text{O}}\) and \({{\text{Cd}}}_{{\text{x}}}{{\text{Zn}}}_{1-{\text{x}}}{\text{O}}\) channel TFTs were found to be superior against its undoped variant. ~ 376%, ~ 105% and ~ 162% are the percentage improvement in \({({\text{I}}}_{{\text{ON}}}/{{\text{I}}}_{{\text{OFF}}})\) ratio, field effect mobility \({(\upmu }_{{\text{FE}}})\) and effective mobility \({(\upmu }_{{\text{eff}}})\) for \({{\text{Cd}}}_{{\text{x}}}{{\text{Zn}}}_{1-{\text{x}}}{\text{O}}\) based TFT with respect to \({\text{ZnO}}\) based TFT, same parameters show ~ 194%, ~ 103% and ~ 133% percentage improvement for the case of \({{\text{Mg}}}_{{\text{y}}}{{\text{Zn}}}_{1-{\text{y}}}{\text{O}}\) TFT. Also, ~ 23% is percentage decrease in subthreshold swing (SS) for \({{\text{Cd}}}_{{\text{x}}}{{\text{Zn}}}_{1-{\text{x}}}{\text{O}}\) based TFT with respect to \({\text{ZnO}}\) based, whereas ~ 11% is percentage decrement for \({{\text{Mg}}}_{{\text{y}}}{{\text{Zn}}}_{1-{\text{y}}}{\text{O}}\). Intrinsic gate delay, the percentage decrement is ~ 54.15 and ~ 59.95% for \({{\text{Mg}}}_{{\text{y}}}{{\text{Zn}}}_{1-{\text{y}}}{\text{O}}\) and \({{\text{Cd}}}_{{\text{x}}}{{\text{Zn}}}_{1-{\text{x}}}{\text{O}}\) respectively w.r.t ZnO. Both the \({{\text{Cd}}}_{{\text{x}}}{{\text{Zn}}}_{1-{\text{x}}}{\text{O}}\) and \({{\text{Mg}}}_{{\text{y}}}{{\text{Zn}}}_{1-{\text{y}}}{\text{O}}\) TFT shows unanimous decrease in delay for the resistive inverter as well as AMLCD pixel display circuits. The reported results shows that bottom gate \({{\text{Cd}}}_{{\text{x}}}{{\text{Zn}}}_{1-{\text{x}}}{\text{O}}\) TFT has better performance for above-mentioned performance parameters. The numerical simulations are performed on Silvaco ATLAS TCAD simulator.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Binay Binod] Last name [Kumar], Author 3 Given name: [Pramod Kumar] Last name [Tiwari], Author 4 Given name: [Aniruddh Bahadur] Last name [Yadav]. Also, kindly confirm the details in the metadata are correctYes, the sequence of authors is correct and the details in the metadata is also accurate. Journal instruction requires a city and country for affiliations; however, these are missing in affiliation [1, 2, 4]. Please verify if the provided city is correct and amend if necessary.We apologize for the misunderstanding. However, the city and country names are already correctly mentioned in Affiliation [1, 2 and 4].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the data used in this manuscript and will be made available if required.

References

  1. F.M. Li, G.W. Hsieh, S. Dalal et al., Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors. IEEE Trans. Electron Devices 56, 156 (2009). https://doi.org/10.1109/TED.2008.2010442

    Article  CAS  Google Scholar 

  2. S. Mondal, S. Paul, M.J. Alam et al., Effects of carrier confinement in MgZnO/CdZnO thin-film transistors: towards next generation display technologies. Superlattices Microstruct. 134, 52 (2019). https://doi.org/10.1016/j.spmi.2019.106220

    Article  CAS  Google Scholar 

  3. K.G. Sun, S.F. Nelson, T.N. Jackson, Modeling of self-aligned vertical ZnO thin-film transistors. IEEE Trans. Electron Devices 62, 1912–1917 (2015). https://doi.org/10.1109/TED.2015.2418174

    Article  CAS  Google Scholar 

  4. K. Kirchgässner, S.D. Sharma, X.-N. Chen, N. Stuntz, Theoretical and experimental studies of an S-Catamaran. Math—Key Technol Futur 18, 103–124 (2003). https://doi.org/10.1007/978-3-642-55753-8_9

    Article  Google Scholar 

  5. F. Torricelli, E.C.P. Smits, J.R. Meijboom et al., Transport physics and device modeling of zinc oxide thin-film transistors–Part II: contact resistance in short channel devices. IEEE Trans. Electron Devices 58, 3025–3033 (2011). https://doi.org/10.1109/TED.2011.2159929

    Article  CAS  Google Scholar 

  6. J. Dong, D. Han, H. Li et al., Effect of Al doping on performance of ZnO thin film transistors. Appl. Surf. Sci. 433, 836–839 (2018). https://doi.org/10.1016/j.apsusc.2017.10.071

    Article  CAS  Google Scholar 

  7. A. Rahaman, M.M. Billah, J.G. Um et al., Effect of doping fluorine in offset region on performance of coplanar a-IGZO TFTs. IEEE Electron Device Lett. 39, 1318–1321 (2018). https://doi.org/10.1109/LED.2018.2856760

    Article  CAS  Google Scholar 

  8. Y.H. Mohammed, Fabrication of n-MgZnO/p-Si heterojunction diode: role of magnesium doping. Superlattices Microstruct. 131, 104–116 (2019). https://doi.org/10.1016/j.spmi.2019.06.001

    Article  CAS  Google Scholar 

  9. R. Rajalakshmi, S. Angappane, Synthesis, characterization and photoresponse study of undoped and transition metal (Co, Ni, Mn) doped ZnO thin films. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 178, 1068–1075 (2013). https://doi.org/10.1016/j.mseb.2013.06.015

    Article  CAS  Google Scholar 

  10. Y. Hu, B. Cai, Z. Hu et al., The impact of Mg content on the structural, electrical and optical properties of MgZnO alloys: a first principles study. Curr. Appl. Phys. 15, 423–428 (2015). https://doi.org/10.1016/j.cap.2015.01.015

    Article  Google Scholar 

  11. L. Bergman, J. Huso, J.L. Morrison et al., ZnO and MgZnO nanocrystalline flexible films: optical and material properties. J. Nanomater. 2011, 22–28 (2011). https://doi.org/10.1155/2011/691582

    Article  CAS  Google Scholar 

  12. N. Badi, S. Khasim, A. Pasha, Synthesis and characterization of urea-doped MgZnO nanoparticles for electronic applications. Appl. Phys. A Mater. Sci. Process. 125, 1–8 (2019). https://doi.org/10.1007/s00339-019-3149-9

    Article  CAS  Google Scholar 

  13. Z. Guo, D. Jiang, N. Hu et al., Significant enhancement of MgZnO metal-semiconductor-metal photodetectors via coupling with Pt nanoparticle surface plasmons. Nanoscale Res. Lett. 13, 4–9 (2018). https://doi.org/10.1186/s11671-018-2573-7

    Article  CAS  Google Scholar 

  14. A.Y. Azarov, T.C. Zhang, B.G. Svensson, A.Y. Kuznetsov, Cd diffusion and thermal stability of CdZnO/ZnO heterostructures. Appl. Phys. Lett. 99, 2011–2014 (2011). https://doi.org/10.1063/1.3639129

    Article  CAS  Google Scholar 

  15. Y. Caglar, M. Caglar, S. Ilican, A. Ates, Morphological, optical and electrical properties of CdZnO films prepared by sol-gel method. J. Phys. D Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/6/065421

    Article  Google Scholar 

  16. Y.K. Verma Analog/RF and linearity distortion analysis of MgZnO/CdZnO Quadruple-Gate Field Effect Transistor ( QG-FET). (2020)

  17. D. Punetha, S.K. Pandey, CO gas sensor based on E-beam evaporated ZnO, MgZnO, and CdZnO thin films: a comparative study. IEEE Sens. J. 19, 2450–2457 (2019). https://doi.org/10.1109/JSEN.2018.2890007

    Article  CAS  Google Scholar 

  18. B.B. Kumar, P.K. Tiwari, S. Dubey, K. Singh, Design and investigation of ZnO based thin film transistors for high-speed AMLCD pixel circuit applications. Micro. Nanostruct. (2022). https://doi.org/10.1016/j.spmi.2021.107122

    Article  Google Scholar 

  19. S. Singh, P. Chakrabarti, Simulation, fabrication and characterization of ZnO based thin film transistors grown by radio frequency magnetron sputtering. J. Nanosci. Nanotechnol. 12, 1880–1885 (2012). https://doi.org/10.1166/jnn.2012.5194

    Article  CAS  PubMed  Google Scholar 

  20. J.S. Wrench, I.F. Brunell, P.R. Chalker et al., Compositional tuning of atomic layer deposited MgZnO for thin film transistors. Appl. Phys. Lett. 105, 2012–2015 (2014). https://doi.org/10.1063/1.4902389

    Article  CAS  Google Scholar 

  21. S.P. Bharath, K.V. Bangera, G.K. Shivakumar, Effect of cadmium incorporation on the properties of zinc oxide thin films. Appl. Nanosci. 8, 187–193 (2018). https://doi.org/10.1007/s13204-018-0661-8

    Article  CAS  Google Scholar 

  22. E. Guziewicz, M. Godlewski, T. Krajewski et al., ZnO grown by atomic layer deposition: a material for transparent electronics and organic heterojunctions. J. Appl. Phys. 105, 52 (2009). https://doi.org/10.1063/1.3133803

    Article  CAS  Google Scholar 

  23. M. Caglar, Y. Caglar, S. Ilican, Investigation of the effect of Mg doping for improvements of optical and electrical properties. Phys. B Condens Matter. 485, 6–13 (2016). https://doi.org/10.1016/j.physb.2015.12.049

    Article  CAS  Google Scholar 

  24. Y. Hou, Z. Mei, Z. Liu et al., MgZnO based ultraviolet photodetector with high photoresponsivity achieved by fluorine doping. Thin Solid Films 634, 165–168 (2017). https://doi.org/10.1016/j.tsf.2017.03.054

    Article  CAS  Google Scholar 

  25. J.W. Mares, M. Falanga, A.V. Thompson et al., Hybrid CdZnO/GaN quantum-well light emitting diodes. J. Appl. Phys. (2008). https://doi.org/10.1063/1.3013446

    Article  Google Scholar 

  26. N. Kangathara, V. Sabari, L. Saravanan, S. Elangovan, Synthesis, characterization, and comparison of pure zinc oxide and magnesium-doped zinc oxide nanoparticles and their application on ethanol sensing activities. J. Nanomater. (2022). https://doi.org/10.1155/2022/1769278

    Article  Google Scholar 

  27. B. Amudhavalli, M. Prasath, R. Mariappan, Recent development of low cost nebulizer sprayed Cd1-xZnxO nanoparticles. Solid State Commun. 341, 114544 (2022). https://doi.org/10.1016/j.ssc.2021.114544

    Article  CAS  Google Scholar 

  28. H.R. Sadeghi Madavani, H. Dehdashti Jahromi, A. Abdolahzadeh Ziabari, Modeling and study of MgZnO/CdZnO MQW LED with p–GaN/AlGaN cladding/EB layer. Optik (Stuttg) 268, 1–12 (2022). https://doi.org/10.1016/j.ijleo.2022.169789

    Article  CAS  Google Scholar 

  29. F. Hussain, M. Imran, R.M.A. Khalil et al., An insight of Mg doped ZnO thin films: a comparative experimental and first-principle investigations. Phys E Low-Dimens. Syst. Nanostruct. (2020). https://doi.org/10.1016/j.physe.2019.113658

    Article  Google Scholar 

  30. M. Rouchdi, E. Salmani, B. Fares et al., Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017). https://doi.org/10.1016/j.rinp.2017.01.023

    Article  Google Scholar 

  31. S.K. Dargar, V.M. Srivastava, Design and analysis of IGZO thin film transistor for AMOLED pixel circuit using double-gate tri active layer channel. Heliyon 5, e01452 (2019). https://doi.org/10.1016/j.heliyon.2019.e01452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N. Jain, K. Singh, S.K. Sharma, R. Kumawat, Analog/RF performance analysis of a-ITZO thin film transistor. Silicon 14, 9909–9923 (2022). https://doi.org/10.1007/s12633-021-01601-7

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BBK carried out TCAD simulation reported in paper, addressed the reviewer comments and revised the manuscript as per the directions. SK carried out TCAD simulation reported in paper, made graphs, written manuscript. Dr. PKT final draft of manuscript. Dr. ABY grammatical correction and some calibration work. Dr. SD grammatical correction and some calibration work. Dr. KS final draft of manuscript check and made graphs.

Corresponding author

Correspondence to Kunal Singh.

Ethics declarations

Conflict of interest

There is no conflict of interest. 

Consent to participate

Yes

Consent for publication

Yes

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B.B., Kumar, S., Tiwari, P.K. et al. Performance Investigation of Bottom Gate ZnO Based TFT for High-Speed Digital Display Circuit Applications. Trans. Electr. Electron. Mater. 25, 314–326 (2024). https://doi.org/10.1007/s42341-024-00515-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-024-00515-6

Keywords

Navigation