Skip to main content

Advertisement

Log in

Numerical Simulation and Optimization of An a-ITZO TFT Based on a Bi-Layer Gate Dielectrics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work is an optimization study by numerical simulation of the performance of a bottom gate amorphous indium tin zinc oxide thin film transistor (a-ITZO TFT) using SILVACO-ATLAS software. The optimization process is focused on the gate dielectric conception, namely, thicknesses, number of layers and materials. The electrical characteristics calculated are the gate capacitance per unit area (\( C_{i} \)), the on-current (\( I_{\rm{on}} \)), the on–off current (\( I_{\rm{on}} /I_{\rm{off}} \)) ratio, the threshold voltage (\( V_{\rm{T}} \)), the field-effect mobility (\( \mu_{\rm{FE}} \)), the sub-threshold swing (\( {\hbox{SS}} \)) and the resistivity (\( \rho \)) of the a-ITZO channel. The obtained results indicate that using a bi-layer dielectrics (SiO2/HfO2) with a relatively high thickness (\( {\hbox{BDT}} = 70\;{\hbox{nm}} \)) improves the electrical response compared to TFT based on the mono-layer dielectric, for the same physical thickness, and the optimized outputs obtained are \( C_{i} = 3.45 \times 10^{ - 7} \;{\hbox{F/cm}}^{2} \), \( I_{\rm{on}} = 4.12 \times 10^{ - 5} \;{\hbox{A}} \), \( I_{\rm{on}} /I_{\rm{off}} = 4.67 \times 10^{8} \), \( V_{\rm{T}} = - {\kern 1pt} 0.45\;{\hbox{V}} \), \( \mu_{\rm{FE}} = 29.34\;{\hbox{cm}}^{2} \; {\hbox{V}}^{ - 1} \;{\hbox{s}}^{ - 1} \), \( {\hbox{SS}} = 6.42 \times 10^{ - 2} \;{\hbox{V/dec}} \), and \( \rho = 2.60 \times 10^{ - 2} \;\varOmega \;{\hbox{cm}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Liu, Q. Zhang, G.X. Liu, F.K. Shan, J.Q. Liu, W.J. Lee, B.C. Shin, and J.S. Bae, J. Electroceram. 33, 31 (2014).

    Article  Google Scholar 

  2. D.-H. Kim, W.-J. Kim, S.J. Park, H.W. Choi, and K.-H. Kim, Surf. Coat. Technol. 205, S324 (2010).

    Article  Google Scholar 

  3. C.A. Hoel, T.O. Mason, J.-F. Gaillard, and K.R. Poeppelmeier, Chem. Mater. 22, 3569 (2010).

    Article  Google Scholar 

  4. A.E. Chagarov and C.A. Kummel, Fundamentals of III-V Semiconductor MOSFET's, ed. S. Oktyabrsky and P. Ye (Boston: Springer, 2010), p. 93.

  5. T. Gupta, Copper Interconnect Technology (New York: Springer, 2009), p. 72.

  6. Y. Li, J.-W. Lee, T.-W. Tang, T.-S. Chaod, T.-F. Lei, and S.M. Sze, Comput. Phys. Commun. 147, 214 (2002).

    Article  Google Scholar 

  7. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).

    Article  Google Scholar 

  8. Y.R. Sharma, I. J. R. A. S. E. T. 1, 2321 (2013).

    Google Scholar 

  9. D. Misra, H. Iwai, and H. Wong, Electrochem. Soc. Interface 14, 30 (2005).

    Google Scholar 

  10. A.P. Huang, Z.C. Yang, and P.K. Chu, P.K. Chu (ed.), Intech; Olajinica. ISBN:978 (2010).

  11. SILVACO-TCAD, ATLAS User’s Manual: Device Simulation Software (California: SILVACO International, 2014).

    Google Scholar 

  12. T. Kamiya, K. Nomura, and H. Hosono, J. Disp. Technol. 5, 273 (2009).

    Article  Google Scholar 

  13. E.K.-H. Yu, S. Jun, D.H. Kim, and J. Kanicki, J. Appl. Phys. 116, 154505 (2014).

    Article  Google Scholar 

  14. J. Jang, D.G. Kim, D.M. Kim, S.-J. Choi, J.-H. Lim, J.-H. Lee, Y.-S. Kim, B.D. Ahn, and D.H. Kim, Appl. Phys. Lett. 105, 152108 (2014).

    Article  Google Scholar 

  15. D. Dass, R. Prasher, and R. Vaid, J. Nano-Electron. Phys. 5, 1 (2013).

    Google Scholar 

  16. T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y. Miyamoto, Sci. Rep. 6, 22277 (2016).

    Article  Google Scholar 

  17. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  Google Scholar 

  18. O. Sneh, R.B. Clark-Phelps, A.R. Londergan, J. Winkler, and T.E. Seidel, Thin Solid Films 402, 248 (2002).

    Article  Google Scholar 

  19. I.Z. Mitrovic, O. Buiu, S. Hall, C. Bungey, T. Wagner, W. Davey, and Y. Lu, Microelectron. Reliab. 47, 645 (2007).

    Article  Google Scholar 

  20. C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, S. Haukka, and M. Tuominen, Appl. Phys. Lett. 78, 2357 (2001).

    Article  Google Scholar 

  21. Y. Kim, G. Gebara, M. Freiler, J. Barnett, D. Riley, J. Chen, K. Torres, J. Lim, B. Foran, and F. Shaapur, in IEDM’01, IEEE International Electron. Devices Meeting, Technical Digest (IEEE, Washington, DC, USA). 20.2.1 (2001).

  22. O. Nilsen, M. Peussa, H. Fjellvag, L. Niinisto, and A. Kjekshus, J. Mater. Chem. 9, 1781 (1999).

    Article  Google Scholar 

  23. Y.S. Kim, J.S. Kang, S.J. Yun, and K.I. Cho, J. Korean Phys. Soc. 35, S216 (1999).

    Google Scholar 

  24. R. Singh and R.K. Ulrich, Electrochem. Soc. Interface 8, 26 (1999).

    Google Scholar 

  25. M. Angela Rabaa, J. Bautista-Ruíza, and R. Miryam Joyab, J. Mater. Res. 19, 1381 (2016).

    Article  Google Scholar 

  26. J.J. Senkevich and S.B. Desu, Poly(tetra-fluoro-p-xylylene). Appl. Phys. Lett. 72, 258 (1998).

    Article  Google Scholar 

  27. L. Colombo, J.J. Chambers, and H. Niimi, Electrochem. Soc. Interface 16, 51 (2007).

    Google Scholar 

  28. A. Ortiz-Conde, F.J. Garcia Sànchez, J.J. Liou, A. Cerdeira, M. Estradac, and Y. Yue, Microelectron. Reliab. 42, 583 (2002).

    Article  Google Scholar 

  29. T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater. 11, 1 (2010).

    Google Scholar 

  30. R.L. Hoffman, J. Appl. Phys. 95, 5813 (2004).

    Article  Google Scholar 

  31. L. Yongye, K. Jang, S. Velumani, C.P. Thi Nguyen, and J. Yi, J. Semicond. 36, 024007 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afak Meftah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taouririt, T.E., Meftah, A. & Sengouga, N. Numerical Simulation and Optimization of An a-ITZO TFT Based on a Bi-Layer Gate Dielectrics. J. Electron. Mater. 48, 1018–1030 (2019). https://doi.org/10.1007/s11664-018-6817-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6817-1

Keywords

Navigation