Skip to main content
Log in

Density Functional Quantum Computations to Investigate the Physical Prospects of Lead-Free Chloro-Perovskites QAgCl3 (Q = K, Rb) for Optoelectronic Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a theoretical investigation employing the Wien2k package within DFT framework was conducted to inspect mechanical, structural, and optoelectronic properties of silver-based cubic chloro-perovskites QAgCl3. Stability of these compounds was confirmed by fitting optimized data to Birch Muranghan equation, enthalpy of formation and tolerance factor. The mBJ potential was utilized to compute band profiles, revealing semiconducting nature mainly from Ag d-states and Cl p-states. Born-Huang criteria confirmed mechanical stability, while other elastic parameters indicated ionic bonding, anisotropy, stiffness, ductility, fracture resistance, and bond-bending resistance. Optical study suggested suitability for practical optoelectronic devices, with a lack of absorbance in the visible region. These outcomes offer a platform for further experimental and theoretical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Data will be available on demand from the corresponding author.

References

  1. B. Geffroy, P. Le Roy, C. Prat, Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polym. Int. 55(6), 572–582 (2006)

    Article  CAS  Google Scholar 

  2. S. Bhosale et al., Influence of growth temperatures on the properties of photoactive CZTS thin films using a spray pyrolysis technique. Mater. Lett. 129, 153–155 (2014)

    Article  CAS  Google Scholar 

  3. S. Benramache et al., Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films. J. Semicond. 34(2), 023001 (2013)

    Article  CAS  Google Scholar 

  4. G. Kaur, G. Kaur, Polymers as bioactive materials II: Synthetic/biodegradable polymers and composites, in Bioactive Glasses: Potential Biomaterials for Future Therapy, 2017, pp. 53–76

  5. H. Przybylińska et al., Magnetic-field-induced ferroelectric polarization reversal in the multiferroic Ge1–x Mnx Te semiconductor. Phys. Rev. Lett. 112(4), 047202 (2014)

    Article  PubMed  Google Scholar 

  6. M. Hassan et al., Molecular beam epitaxy of single phase GeMnTe with high ferromagnetic transition temperature. J. Cryst. Growth 323(1), 363–367 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Bernardi et al., Optical and electronic properties of two-dimensional layered materials. Nanophotonics 6(2), 479–493 (2017)

    Article  Google Scholar 

  8. H.I.T. Hauge et al., Hexagonal silicon realized. Nano Lett. 15(9), 5855–5860 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. M.D. Bhatt, C. O’Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys. Chem. Chem. Phys. 17(7), 4799–4844 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. X. Zhou et al., Recent theoretical progress in the development of perovskite photovoltaic materials. J. Energy Chem. 27(3), 637–649 (2018)

    Article  Google Scholar 

  11. J. Zhu et al., Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 4(9), 2917–2940 (2014)

    Article  CAS  Google Scholar 

  12. M. Kubicek, A.H. Bork, J.L. Rupp, Perovskite oxides–a review on a versatile material class for solar-to-fuel conversion processes. J. Mater Chem A 5(24), 11983–12000 (2017)

    Article  CAS  Google Scholar 

  13. M. Husain et al., Predicting structural, optoelectronic and mechanical properties of germanium based AGeF3 (A= Ga and In) halides perovskites using the DFT computational approach. Opt. Quant. Electron. 55(6), 536 (2023)

    Article  CAS  Google Scholar 

  14. S. De Wolf et al., Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014)

    Article  PubMed  Google Scholar 

  15. L.M. Herz, Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. L.M. Pazos-Outón et al., Photon recycling in lead iodide perovskite solar cells. Science 351(6280), 1430–1433 (2016)

    Article  PubMed  Google Scholar 

  17. S. Piskunov et al., Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: An ab initio HF/DFT study. Comput. Mater. Sci. 29(2), 165–178 (2004)

    Article  CAS  Google Scholar 

  18. S. Ullah et al., Influence of P2O5 and SiO2 addition on the phase, microstructure, and electrical properties of KNbO3. Iran. J. Sci. Technol. Trans. A: Sci. 43, 1981–1987 (2019)

    Article  Google Scholar 

  19. G.K. Madsen et al., Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64(19), 195134 (2001)

    Article  Google Scholar 

  20. K. Schwarz, P. Blaha, G.K. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1–2), 71–76 (2002)

    Article  Google Scholar 

  21. P. Blaha et al., wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties. 60(1) (2001)

  22. D. Bagayoko, Understanding density functional theory (DFT) and completing it in practice. AIP Adv 4(12) (2014)

  23. N. Argaman, G. Makov, Density functional theory: An introduction. Am. J. Phys. 68(1), 69–79 (2000)

    Article  CAS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80(4), 891 (1998)

    Article  CAS  Google Scholar 

  25. D. Koller, F. Tran, P. Blaha, Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85(15), 155109 (2012)

    Article  Google Scholar 

  26. R.I. Eglitis, A.I. Popov, Systematic trends in (0 0 1) surface ab initio calculations of ABO3 perovskites. J. Saudi Chem. Soc. 22(4), 459–468 (2018)

    Article  CAS  Google Scholar 

  27. R.I. Eglitis et al., Review of first principles simulations of STO/BTO, STO/PTO, and SZO/PZO (001) heterostructures. Crystals 13(5), 799 (2023)

    Article  CAS  Google Scholar 

  28. A.H. Reshak, M. Jamal, DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: A new package (ortho-elastic). J. Alloy. Compd. 543, 147–151 (2012)

    Article  CAS  Google Scholar 

  29. M. Jamal et al., IRelast package. J. Alloy. Compd. 735, 569–579 (2018)

    Article  CAS  Google Scholar 

  30. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  Google Scholar 

  31. P. Rodríguez-Hernández, A. Muãoz, A. Mujica, High pressure phases of AlSb from ab-initio theory. Phys. Status Solidi B 198(1), 455–459 (1996)

    Article  Google Scholar 

  32. W. Liu, W. Zheng, Q. Jiang, First-principles study of the surface energy and work function of III-V semiconductor compounds. Phys. Rev. B 75(23), 235322 (2007)

    Article  Google Scholar 

  33. C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175(1), 1–14 (2006)

    Article  CAS  Google Scholar 

  34. M. Fox, Optical Properties of Solids (American Association of Physics Teachers, 2002)

  35. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809 (1947)

    Article  CAS  Google Scholar 

  36. D.P. Hastuti, P. Nurwantoro, Stability study of germanene vacancies: The first-principles calculations. Materials Today Communications 19, 459–463 (2019)

    Article  CAS  Google Scholar 

  37. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30(9), 244–247 (1944)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. V. Goldschmidt, Crystal structure and chemical constitution. Trans. Faraday Soc. 25, 253–283 (1929)

    Article  CAS  Google Scholar 

  39. S.A. Dar, V. Srivastava, U.K. Sakalle, Ab-initio DFT based investigation of double perovskite oxide Ba2CdOsO6 with cubic structure. Comput Condens Matt 18, e00351 (2019)

    Article  Google Scholar 

  40. M. Born, On the stability of crystal lattices. I, in Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press, Cambridge, 1940)

  41. W. Voigt, Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik). Vol. 34. 1910: BG Teubner.

  42. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349 (1952)

    Article  Google Scholar 

  43. W. Hume-Rothery, Elasticity and Anelasticity of Metals (Nature Publishing Group UK London, London, 1949)

    Book  Google Scholar 

  44. A. Zia et al., Ab-initio calculations of the structural, electronic and optical response of KXCl3 (X= be, Ca and Sr) for optoelectronic applications. Comput. Condens. Matt. 33, e00737 (2022)

    Article  Google Scholar 

  45. D. Connétable, O. Thomas, First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi. Phys. Rev. B 79(9), 094101 (2009)

    Article  Google Scholar 

  46. D. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8(4), 345–349 (1992)

    Article  CAS  Google Scholar 

  47. M.M. Rahaman et al., Alkaline-Earth metal effects on physical properties of ferromagnetic AVO3 (A= Ba, Sr, Ca, and Mg): Density functional theory insights. ACS Omega 7(24), 20914–20926 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367), 823–843 (1954)

    Article  CAS  Google Scholar 

  49. I.N. Frantsevich, Elastic Constants and Elastic Moduli of Metals and Insulators. Reference book, 1982.

  50. S. Das et al., First-principles calculations to investigate structural, mechanical, electronic, magnetic and thermoelectric properties of Ba2CaMO6 (M= Re, Os) cubic double perovskites. Physica B 626, 413554 (2022)

    Article  CAS  Google Scholar 

  51. S. Bouhmaidi et al., First-principles calculations on structural, electronic, elastic, optical and thermoelectric properties of thallium based chloroperovskites TlMCl3 (M= Zn and Cd). Computational Condensed Matter 33, e00756 (2022)

    Article  Google Scholar 

  52. D. Sanditov, A. Mashanov, M. Darmaev, Propagation velocity of longitudinal and transverse acoustic waves and anharmonicity of lattice oscillations. Tech. Phys. 54, 1398–1401 (2009)

    Article  CAS  Google Scholar 

  53. M.F. Iqbal et al., Anharmonic phonon coupling and decay of optical phonons in polycrystalline CdSe thin films. Ceram. Int. 48(16), 23862–23869 (2022)

    Article  CAS  Google Scholar 

  54. S. Nabi et al., First principle computation of pure and (Sc, P, Bi)-doped AlSb for optoelectronic and photonic applications. J. Inorg. Organomet. Polym. Materi. 1–14 (2023)

  55. M. Hutereau et al., Resolving anharmonic lattice dynamics in molecular crystals with X-ray diffraction and terahertz spectroscopy. Phys. Rev. Lett. 125(10), 103001 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. A. Özden et al., Thermal conductivity and phonon anharmonicity of chemical vapor transport grown and mineral–FeS2 single crystals: An optothermal Raman study. J. Raman Spectrosc. 54(1), 84–92 (2023)

    Article  Google Scholar 

  57. L. Hasni et al., First-principles calculations of structural, magnetic electronic and optical properties of rare-earth metals TbX (X= N, O, S, Se). J. Supercond. Novel Magn. 30, 3471–3479 (2017)

    Article  CAS  Google Scholar 

  58. M.S. Alam et al., Tuning band gap and enhancing optical functions of AGeF3 (A= K, Rb) under pressure for improved optoelectronic applications. Sci. Rep. 12(1), 8663 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Biswas et al., Effects of Bi and Mn codoping on the physical properties of barium titanate: investigation via DFT method. Appl. Phys. A 127(12), 939 (2021)

    Article  CAS  Google Scholar 

  60. S. Bouhmaidi et al., Ab initio study of structural, elastic, electronic, optical and thermoelectric properties of cubic Ge-based fluoroperovskites AGeF3 (A= K, Rb and Fr). Solid State Commun. 369, 115206 (2023)

    Article  CAS  Google Scholar 

  61. T.K. Joshi, G. Sharma, A.S. Verma, Investigation of structural, electronic, optical and thermoelectric properties of Ethylammonium tin iodide (CH3CH2NH3SnI3): an appropriate hybrid material for photovoltaic application. Mater. Sci. Semicond. Process. 115, 105111 (2020)

    Article  CAS  Google Scholar 

  62. S.A. Khattak et al., Investigation of structural, mechanical, optoelectronic, and thermoelectric properties of BaXF3 (X= Co, Ir) fluoro-perovskites: Promising materials for optoelectronic and thermoelectric applications. ACS Omega 8(6), 5274–5284 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. M.F. Iqbal et al., Enhanced anharmonic phonon coupling and decay dominated by low-energy phonons in CdS nanowires. J. Raman Spectrosc. 50(10), 1492–1501 (2019)

    Article  CAS  Google Scholar 

  64. T. Ouahrani et al., Elastic properties and bonding of the AgGaSe2 chalcopyrite. Physica B 405(17), 3658–3664 (2010)

    Article  CAS  Google Scholar 

  65. R. Sharma et al., A DFT investigation of CsMgX3 (X= Cl, Br) halide perovskites: electronic, thermoelectric and optical properties. Comput. Theor. Chem. 1204, 113415 (2021)

    Article  CAS  Google Scholar 

  66. S. Basu, Y.B. Chen, Z. Zhang, Microscale radiation in thermophotovoltaic devices—a review. Int. J. Energy Res. 31(6–7), 689–716 (2007)

    Article  CAS  Google Scholar 

Download references

Funding

The author K M Batoo would like to thank Researchers Supporting Project No. (RSP2023R148), King Saud University, Riyadh, Saudi Arabia for the financial support. Deanship of Scientific Research, King Saud University, RSP2023R148, Khalid Mujasam Batoo.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saeed Ullah or Saad Tariq.

Ethics declarations

Conflicts of Interest

Authors declare no conflicts of interest.

Ethical Approval

(Not applicable) No approval is needed in this work as this work include no human or animal trial

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Abbas, M., Tariq, S. et al. Density Functional Quantum Computations to Investigate the Physical Prospects of Lead-Free Chloro-Perovskites QAgCl3 (Q = K, Rb) for Optoelectronic Applications. Trans. Electr. Electron. Mater. 25, 327–339 (2024). https://doi.org/10.1007/s42341-024-00514-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-024-00514-7

Keywords

Navigation