Skip to main content
Log in

Jacobian Based Nonlinear Algorithms for Prediction of Optimized RF MEMS Switch Dimensions

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

This communication discusses the role of nonlinear algorithms in training the neural network, which predicts the optimized RF MEMS switch dimensions. A dedicated dataset, i.e., DrTLN-RF-MEMS-SWITCH-DATASET-v1, was created by considering the most appropriate input and output variable suitable to predict the cantilever dimensions, crab leg and serpentine structure-based RF MEMS switches. The distinct artificial neural networks (ANN) performance is analysed using various training methods. The hardware implementation possible neural network algorithms, i.e., Fitting and Cascade Feed Forward Network, are considered for learning and prediction. The ANN algorithm's performance in predicting and optimizing RF MEMS switch is analysed using nonlinear training methods like Levenberg–Marquardt (LM) and Scaled Conjugate Gradient (SCG). The cascaded forward network with LM training combination offers the best performance compared with other varieties. A comprehensive study is performed using neural networks and finite element simulation results. The study revealed that the error percentage is below 15.08% for most of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Chaudhary, P.R. Mudimela, Pull-in response and eigen frequency analysis of graphene oxide-based NEMS switch. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.01.560

    Article  Google Scholar 

  2. Y. Naito, K. Nakamura, K. Uenishi, Laterally movable triple electrodes actuator toward low voltage and fast response RF-MEMS switches. Sensors (2019). https://doi.org/10.3390/s19040864

    Article  Google Scholar 

  3. Z. Yan-qing, L. Han, M. Qin, Q.-a Huang, Novel DC-40 GHz MEMS series-shunt witch for high isolation and high power applications. Sens. Actuators A (2014). https://doi.org/10.1016/j.sna.2014.04.024

    Article  Google Scholar 

  4. S. Heydari, K. Pedram, Z. Ahmed, F.B. Zarrabi, Dual band monopole antenna based on metamaterial structure with narrowband and UWB resonances with reconfigurable quality. Int. J. Electron. Commun. (2017). https://doi.org/10.1016/j.aeue.2017.07.015

    Article  Google Scholar 

  5. H. Mohammed, H. Mohamed, Performance comparison of feed-forward neural networks trained with different learning algorithms for recommender systems. Computation (2017). https://doi.org/10.3390/computation5030040

    Article  Google Scholar 

  6. M. Adrian, C. Angel, A. Rặzvan, Learning in feedforward neural networks accelerated by transfer entropy. Entropy (2020). https://doi.org/10.3390/e22010102

    Article  Google Scholar 

  7. D.C. Sérgio, T. Slavisa, B. Marko, A feed-forward neural network approach for energy-based acoustic source localization. J. Sens. Actuator Netw. (2019). https://doi.org/10.3390/jsan10020029

    Article  Google Scholar 

  8. R.R. Benoit, R.Q. Rudy, J.S. Pulskamp, R.G. Polcawich, Piezoelectric RF MEMS switches on Si-on-Sapphire substrates. J. Microelectromech. Syst. (2020). https://doi.org/10.1109/JMEMS.2020.3008201

    Article  Google Scholar 

  9. J. Iannacci, RF–MEMS for high-performance and widely reconfigurable passive components—a review with focus on future telecommunications, internet of things (IoT) and 5g applications. J. King Saud Univ. Sci. (2017). https://doi.org/10.1016/j.jksus.2017.06.011

    Article  Google Scholar 

  10. S.S. Attar, R.R. Masnour, Integration of niobium low temperature superconducting RF circuits with gold-based RF MEMS switches. IEEE Trans. Appl. Supercond. (2014). https://doi.org/10.1109/TASC.2014.2364453

    Article  Google Scholar 

  11. D.T. Huong Giang, N.H. Duc, G. Agnus, T. Maroutian, P. Lecoeur, Fabrication and characterization of PZT string based MEMS devices. J. Sci. Adv. Mater. Dev. (2016). https://doi.org/10.1016/j.jsamd.2016.05.004

    Article  Google Scholar 

  12. C. Amrita, G. Bhaskar, K.S. Binay, Design, fabrication and characterization of miniature RF MEMS switched capacitor based phase shifter. Microelectron J (2014). https://doi.org/10.1016/j.mejo.2014.05.009

    Article  Google Scholar 

  13. L. Han, X. Gao, Modeling of bending characteristics on micromachined RF MEMS switch based on LCP substrate. IEEE Trans. Electron Dev. (2016). https://doi.org/10.1109/TED.2016.2593799

    Article  Google Scholar 

  14. I. Comart, C. Cetintepe, E. Sagiroglu, S. Demir, T. Akin, Development and modeling of a wafer-level BCB packaging method for capacitive RF MEMS switches. J. Microelectromech. Syst. (2019). https://doi.org/10.1109/JMEMS.2019.2912745

    Article  Google Scholar 

  15. C. Chen, Y. Tzeng, E. Kohn, C.-H. Wang, J.-K. Mao, RF MEMS capacitive switch with leaky nanodiamond dielectric film. Diam. Relat. Mater. (2011). https://doi.org/10.1016/j.diamond.2011.02.008

    Article  Google Scholar 

  16. C.-T. Jasmina, A.L. Marco, G. David, P. Lluís, L. Antonio, G. Flavio, C. Sabrina, Analytical energy model for the dynamic behavior of RF MEMS switches under increased actuation voltage. J Microelectromech Syst (2014). https://doi.org/10.1109/JMEMS.2014.2314752

    Article  Google Scholar 

  17. E.E. Okoro, T. Obomanu, S.E. Sanni, D.I. Olatunji, P. Igbinedion, Application of artificial intelligence in predicting the dynamics of bottom hole pressure for under-balanced drilling: extra tree compared with feed forward neural network model. Petroleum (2021). https://doi.org/10.1016/j.petlm.2021.03.001

    Article  Google Scholar 

  18. T. Shaopeng, I.A. Noreen, T. Davood, S.A. Eftekhari, H. Maboud, Using perceptron feed-forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene oxide-Al2O3/ water-ethylene glycol hybrid nanofluid. Case Stud Thermal Eng (2021). https://doi.org/10.1016/j.csite.2021.101055

    Article  Google Scholar 

  19. M. Zlatica, M. Vera, Ć Tomislav, V. Larissa, P.-R. Olivera, Artifical neural networks in RF MEMS switch modelling. Facta Univ Ser Electron Energetics (2016). https://doi.org/10.2298/FUEE1602177M

    Article  Google Scholar 

  20. M. Viviana, Instability and drift phenomena in switching RF-MEMS microsystems. Actuators (2019). https://doi.org/10.3390/act8010015

    Article  Google Scholar 

  21. Zlatica, M., Taeyoung, K., Vera, M., Marija, M., Olivera, P.-R., Tomislav, C., Larissa, V. Artificiel Neural Network based design of RF MEMS capacitive shunt switch, ACES J., 31(7), 2016.

  22. F.Z. Qazi, S.R. Mulpuri, Investigation of an efficient RF-MEMS switch for reconfigurable antenna using hybrid algorithm with artificial neural network. J. Artif. Intell. (2018). https://doi.org/10.3923/jai.2018.79.84

    Article  Google Scholar 

  23. Ć Tomislav, M. Zlatica, D. Rohan, P.-R. Olivera, M. Vera, Hybrid neural lumped element approach in inverse modeling of RF MEMS switches. Facta Univ. Ser. Electron. Energetics (2020). https://doi.org/10.2298/FUEE2001027C

    Article  Google Scholar 

  24. S. Balachandran, T. Weller, A. Kumar, S. Jeedigunta, H. Gomez, J. Kusterer, E. Kohn, Nanocrystalline diamond for RF-MEMS applications. Emerg. Nanotechnol. Manuf. (2009). https://doi.org/10.1016/B978-0-323-28990-0.00012-9

    Article  Google Scholar 

  25. B.-K. Maher, R.M. Raafat, High power latching RF MEMS switches. IEEE Trans. Microw. Theory Tech. (2014). https://doi.org/10.1109/TMTT.2014.2376932

    Article  Google Scholar 

  26. L. Han, A reconfigurable microwave equalizer with different maximum attenuations based on RF MEMS switches. IEEE Sens. J. (2015). https://doi.org/10.1109/JSEN.2015.2482999

    Article  Google Scholar 

  27. M.-R. Mohammadi, A. Hemmati-Sarapardeh, M. Schaffie, M.M. Husein, R. Mohammad, Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery. J. Petrol. Sci. Eng. (2021). https://doi.org/10.1016/j.petrol.2021.108836

    Article  Google Scholar 

  28. King Y.C., Rodica R., Raafat R.M., Novel miniaturized RF MEMS staircase Switch Matrixl, IEEE Microw. Wirel. Compon Lett 22(3) 2012.

  29. Mojgan D., Raafat R.M., Redundancy RF MEMS Multiport Switches and Switch Matrices, J Microelectromech Syst 16(2), 2007.

  30. Jaewoo L., Chang H.J., Sungweon K., Chang-Auck C., A low-loss single-pole six-throw switch based on compact RF MEMS switches, IEEE Trans. Microw. Theory Tech. 53(11), 2005.

  31. Ananda P. De Silva and Henry G. Hughes, “The Package Integration of RF-MEMS Switch and Control IC for Wireless Applications”, IEEE Transactions on Advanced Packaging, Vol. 26, No. 3, 2003.

  32. J. Pal, Y. Zhu, J. Lu, D.Dao, and F.Khan, “High Power and Reliable SPST/SP3T RF MEMS Switches for Wireless Applications”, IEEE Electron Device Letters, Vol. 37, No. 9, 2016.

  33. Hee-Chul Lee, Jae-Yeong Park, and Jong-Uk Bu,“Piezoelectrically Actuated RF MEMS DC Contact Switches With Low Voltage Operation”, IEEE Microwave And Wireless Components Letters, Vol. 15, No. 4, 2005.

  34. Yuhao Liu, Yusha Bey, and Xiaoguang Liu, “High-Power High-Isolation RF-MEMS Switches With Enhanced Hot-Switching Reliability Using a Shunt Protection Technique”, IEEE Transactions on Microwave Theory And Techniques, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Narayana Thalluri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thalluri, L.N., Kumar, M.A., Ali, M.S.M. et al. Jacobian Based Nonlinear Algorithms for Prediction of Optimized RF MEMS Switch Dimensions. Trans. Electr. Electron. Mater. 24, 447–458 (2023). https://doi.org/10.1007/s42341-023-00463-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00463-7

Keywords

Navigation