Skip to main content
Log in

Harnessing the Role of Charge Transport Layers for Efficient Design of PBDBT/ITIC-OE Based Organic Solar Cell

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Fullerene-free organic solar cells having high dielectric constant acceptor material ITIC-OE hold a great deal of promise for breakthroughs in organic photovoltaics research in the future. In this paper, the impact of electron transport layers and hole transport layers on non fullerene acceptor based bulk heterojunction organic solar cell with device structure: FTO/ETL/PBDB-T:ITIC-OE/HTL/Au has been examined using the solar cell capacitance simulator. The device structure has been investigated with different ETLs such as TiO2, ZnO, and ZnOS, as well as HTLs such as CuI, CuSCN, and Cu2O. The investigations have shown that ZnOS and Cu2O have been shown to be the most effective ETL and HTL for the proposed structure, having values of VOC, JSC, FF and PCE as 1.1313 V, 13.86 mAcm-2, 79.81% and 12.52% respectively. Further, absorber layer has been optimized in terms of its thickness (250 nm) and density of defects (1012 cm−3). The optimization of interfacial layers resulted in optimized thickness of ETL as 50 nm and HTL as 150 nm. When simulation is performed by using improved parameters, the photovoltaic parameters of the proposed device are found to be significantly improved, having values of VOC, JSC, FF and PCE as 1.1241 V, 21.01 mAcm-2, 85.14%, and 20.12% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19(7), 1924–1945 (2004)

    Article  CAS  Google Scholar 

  2. G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics. 6(3), 153–161 (2012)

    Article  CAS  Google Scholar 

  3. B.C. Thompson, J.M. Fréchet, “Polymer–fullerene composite solar cells.” Angewandte chemie international edition 47, no. 1 (2008): 58–77

  4. A.J. Heeger, 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26(1), 10–28 (2014)

    Article  CAS  Google Scholar 

  5. H.K.H. Lee, A.M. Telford, J.A. Röhr, M.F. Wyatt, B. Rice, J. Wu, A. de Castro Maciel, S.M. Tuladhar, E. Speller, J. McGettrick, J.R. Searle, “The role of fullerenes in the environmental stability of polymer: fullerene solar cells.” Energy Environ. Sci., no. 2, (2018): 417–428

  6. N. Yeh, P. Yeh, Organic solar cells: their developments and potentials. Renew. Sustain. Energy Rev. 21, 421–431 (2013)

    Article  CAS  Google Scholar 

  7. C.J. Brabec, S. Gowrisanker, J.J. Halls, D. Laird, S. Jia, S.P. Williams, Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 22(34), 3839–3856 (2010)

    Article  CAS  Google Scholar 

  8. L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao, L. Yu, Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115(23), 12666–12731 (2015)

    Article  CAS  Google Scholar 

  9. K.M. Coakley, M.D. McGehee, Conjugated polymer photovoltaic cells. Chem. Mater. 16(23), 4533–4542 (2004)

    Article  CAS  Google Scholar 

  10. B.A. Gregg, M.C. Hanna, Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J. Appl. Phys. 93(6), 3605–3614 (2003)

    Article  CAS  Google Scholar 

  11. M.A. Green, “Corrigendum to ‘Solar cell efficiency tables (version 46)’[Prog. Photovolt: Res. Appl. 2015; 23: 805–812].” Progress in Photovoltaics: Research and Applications 23, no. 9 (2015): 1202–1202

  12. M.C. Scharber, N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 38(12), 1929–1940 (2013)

    Article  CAS  Google Scholar 

  13. W.A. Hammed, R. Yahya, A.L. Bola, H.N.M.E. Mahmud, Recent approaches to controlling the nanoscale morphology of polymer-based bulk-heterojunction solar cells. Energies. 6(11), 5847–5868 (2013)

    Article  Google Scholar 

  14. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, J. Christoph, Brabec. “Design rules for donors in bulk-heterojunction solar cells—Towards 10%energy‐conversion efficiency.“ Advanced materials 18, no. 6 (2006): 789–794

  15. N. Gasparini, A. Wadsworth, M. Moser, D. Baran, I. McCulloch, C.J. Brabec, The physics of small molecule acceptors for efficient and stable bulk heterojunction solar cells. Adv. Energy Mater. 8(12), 1703298 (2018)

    Article  Google Scholar 

  16. J. Hou, O. Inganäs, R.H. Friend, F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17(2), 119–128 (2018)

    Article  CAS  Google Scholar 

  17. Y. Li, J.D. Lin, X. Che, Y. Qu, F. Liu, L.S. Liao, S.R. Forrest, High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells. J. Am. Chem. Soc. 139(47), 17114–17119 (2017)

    Article  CAS  Google Scholar 

  18. R. Singh, J. Lee, M. Kim, P.E. Keivanidis, K. Cho, Control of the molecular geometry and nanoscale morphology in perylene diimide based bulk heterojunctions enables an efficient non-fullerene organic solar cell. J. Mater. Chem. A 5(1), 210–220 (2017)

    Article  CAS  Google Scholar 

  19. Q. An, W. Gao, F. Zhang, J. Wang, M. Zhang, K. Wu, X. Ma, Z. Hu, C. Jiao, C. Yang, Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss. J. Mater. Chem. A 6(6), 2468–2475 (2018)

    Article  CAS  Google Scholar 

  20. G. Zhang, J. Zhao, P.C. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 118(7), 3447–3507 (2018)

    Article  CAS  Google Scholar 

  21. X. Zhan, A. Facchetti, S. Barlow, T.J. Marks, M.A. Ratner, M.R. Wasielewski, S.R. Marder, Rylene and related diimides for organic electronics. Adv. Mater. 23(2), 268–284 (2011)

    Article  CAS  Google Scholar 

  22. Y. Lin, X. Zhan, Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater. Horiz. 1(5), 470–488 (2014)

    Article  CAS  Google Scholar 

  23. J.E. Anthony, Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem. Mater. 23(3), 583–590 (2011)

    Article  CAS  Google Scholar 

  24. C. Sun, S. Lee, C. Choi, S. Jeong, J. Oh, J.H. Kim, J. Kim, New Non-Fullerene Acceptor with Extended Conjugation of Cyclopenta [2, 1-b: 3, 4-b’] Dithiophene for Organic Solar cells. Molecules. 27(21), 7615 (2022)

    Article  CAS  Google Scholar 

  25. Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32(19), 1908205 (2020)

    Article  CAS  Google Scholar 

  26. G.M. Su, T.V. Pho, N.D. Eisenmenger, C. Wang, F. Wudl, E.J. Kramer, M.L. Chabinyc, Linking morphology and performance of organic solar cells based on decacyclene triimide acceptors. J. Mater. Chem. A 2(6), 1781–1789 (2014)

    Article  CAS  Google Scholar 

  27. Y. Lin, J. Wang, T. Li, Y. Wu, C. Wang, L. Han, Y. Yao, W. Ma, X. Zhan, Efficient fullerene-free organic solar cells based on fused-ring oligomer molecules. J. Mater. Chem. A 4(4), 1486–1494 (2016)

    Article  CAS  Google Scholar 

  28. D. Luo, W. Jang, D.D. Babu, M.S. Kim, D.H. Wang, A.K.K. Kyaw, Recent progress in organic solar cells based on non-fullerene acceptors: materials to devices. J. Mater. Chem. A 10(7), 3255–3295 (2022)

    Article  CAS  Google Scholar 

  29. P. Meredith, W. Li, A. Armin, Nonfullerene acceptors: a renaissance in organic photovoltaics? Adv. Energy Mater. 10(33), 2001788 (2020)

    Article  CAS  Google Scholar 

  30. P. Cheng, G. Li, X. Zhan, Y. Yang, Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics. 12(3), 131–142 (2018)

    Article  CAS  Google Scholar 

  31. Y. Lin, J. Wang, Z.G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27(7), 1170–1174 (2015)

    Article  CAS  Google Scholar 

  32. Z. Fei, F.D. Eisner, X. Jiao, M. Azzouzi, J.A. Röhr, Y. Han, M. Shahid, An alkylated indacenodithieno [3, 2-b] thiophene‐based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Adv. Mater. 30(8), 1705209 (2018)

    Article  Google Scholar 

  33. X. Liu, B. Xie, C. Duan, Z. Wang, B. Fan, K. Zhang, B. Lin, F.J. Colberts, W. Ma, R.A. Janssen, F. Huang, A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J. Mater. Chem. A 6(2), 395–403 (2018)

    Article  CAS  Google Scholar 

  34. K.S. Nithya, K.S. Sudheer, Numerical modelling of non-fullerene organic solar cell with high dielectric constant ITIC-OE acceptor. J. Phys. Commun. 4(2), 025012 (2020)

    Article  CAS  Google Scholar 

  35. K.S. Nithya, K.S. Sudheer, Device modelling and optimization studies on novel ITIC-OE based non-fullerene organic solar cell with diverse hole and electron transport layers. Opt. Mater. 123, 111912 (2022)

    Article  CAS  Google Scholar 

  36. L. Rakocevic, R. Gehlhaar, T. Merckx, W. Qiu, U.W. Paetzold, H. Fledderus, J. Poortmans, “Interconnection optimization for highly efficient perovskite modules.” IEEE J. Photovolt., no. 1 (2016): 404–408

  37. M. Stuckelberger, T. Nietzold, G.N. Hall, B. West, J. Werner, B. Niesen, C. Ballif, V. Rose, D.P. Fenning, M.I. Bertoni, Charge collection in hybrid perovskite solar cells: relation to the nanoscale elemental distribution. IEEE J. Photovolt. 7(2), 590–597 (2016)

    Article  Google Scholar 

  38. S. Bansal, P. Aryal, “Evaluation of New Materials for Electron and Hole Transport Layers in Perovskite-Based Solar Cells Through SCAPS-1D Simulations.” In IEEE 43rd Photovoltaic Specialists Conference (PVSC), (2016): 0747–0750

  39. A. Katariya, B. Mahapatra, P.K. Patel, J. Rani, Optimization of ETM and HTM layer on NFA based BHJ-organic solar cell for high efficiency performance. Optik. 245, 167717 (2021)

    Article  CAS  Google Scholar 

  40. Z. Hu, L. Ying, F. Huang, Y. Cao, Towards a bright future: polymer solar cells with power conversion efficiencies over 10%. Sci. China Chem. 60(5), 571–582 (2017)

    Article  CAS  Google Scholar 

  41. Z. Yin, J. Wei, Q. Zheng, Interfacial materials for organic solar cells: recent advances and perspectives. Adv. Sci. 3(8), 1500362 (2016)

    Article  Google Scholar 

  42. M. Nakamura, Y. Kouji, Y. Chiba, H. Hakuma, T. Kobayashi, T. Nakada, “Achievement of 19.7% efficiency with a small-sized Cu (InGa)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer.”In 39th IEEE PVSC, Tampa, USA, August 2013

  43. A. Tara, V. Bharti, S. Sharma, R. Gupta, Device simulation of FASnI3 based perovskite solar cell with zn (O0. 3, S0. 7) as electron transport layer using SCAPS-1D. Opt. Mater. 119, 111362 (2021)

    Article  CAS  Google Scholar 

  44. M. Grundmann, F.L. Schein, M. Lorenz, T. Böntgen, J. Lenzner, von Wenckstern. “Cuprous iodide–ap-type transparent semiconductor: history and novel applications. Phys. status solidi (a). 210(9), 1671–1703 (2013)

    Article  CAS  Google Scholar 

  45. G.R.R.A. Kumara, A. Konno, G.K.R. Senadeera, P.V.V. Jayaweera, D.B.R.A. De Silva, K. Tennakone, Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Sol. Energy Mater. Sol. Cells. 69(2), 195–199 (2001)

    Article  CAS  Google Scholar 

  46. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5(1), 1–6 (2014)

    Article  Google Scholar 

  47. Q. Xu, F. Wang, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, Y. Li, High-performance polymer solar cells with solution-processed and environmentally friendly CuOx anode buffer layer. ACS Appl. Mater. Interfaces. 5(21), 10658–10664 (2013)

    Article  CAS  Google Scholar 

  48. H.T. Lien, D.P. Wong, N.H. Tsao, C.I. Huang, C. Su, K.H. Chen, L.C. Chen, Effect of copper oxide oxidation state on the polymer-based solar cell buffer layers. ACS Appl. Mater. Interfaces. 6(24), 22445–22450 (2014)

    Article  CAS  Google Scholar 

  49. M. Lyu, J.H. Yun, P. Chen, M. Hao, L. Wang, Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv. Energy Mater. 7(15), 1602512 (2017)

    Article  Google Scholar 

  50. K.D. Jayan, V. Sebastian, Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy. 217, 40–48 (2021)

    Article  Google Scholar 

  51. Y. Gan, X. Bi, Y. Liu, B. Qin, Q. Li, Q. Jiang, P. Mo, Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies. 13(22), 5907 (2020)

    Article  CAS  Google Scholar 

  52. A. Zekry, A. Shaker, M. Salem, “Solar cells and arrays: principles, analysis, and design.” Advances in Renewable Energies and Power Technologies, 3–56. Elsevier, 2018

  53. W. Abdelaziz, A. Shaker, M. Abouelatta, A. Zekry, Possible efficiency boosting of non-fullerene acceptor solar cell using device simulation. Opt. Mater. 91, 239–245 (2019)

    Article  CAS  Google Scholar 

  54. Z. Zekry, G. Eldallal, Effect of MS contact on the electrical behaviour of solar cells. Solid State Electron. 31(1), 91–97 (1988)

    Article  CAS  Google Scholar 

  55. D. Yeboah, J. Singh, Dependence of exciton diffusion length and diffusion coefficient on photophysical parameters in bulk heterojunction organic solar cells. J. Electron. Mater. 46(11), 6451–6460 (2017)

    Article  CAS  Google Scholar 

  56. O.O. Amusan, H. Louis, S.U. Zafar, A.T. Hamzat, D.M. Peter, Different interface engineering in organic solar cells: a review. Chem. Methodologies. 3(4), 425–441 (2019)

    CAS  Google Scholar 

  57. H. Xu, F. Yuan, D. Zhou, X. Liao, L. Chen, Y. Chen, Hole transport layers for organic solar cells: recent progress and prospects. J. Mater. Chem. A 8(23), 11478–11492 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Marc Burgelman of the University of Gent, Belgium, has been very generous in sharing the SCAPS-1D Software, for which the authors are quite grateful. Ayush Tara has been given a University Research Scholarship (RA/SA/URS-PhD/245/22/1872-74) to support his doctorate studies at the University of Jammu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rockey Gupta.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tara, A., Bharti, V., Sharma, S. et al. Harnessing the Role of Charge Transport Layers for Efficient Design of PBDBT/ITIC-OE Based Organic Solar Cell. Trans. Electr. Electron. Mater. 24, 356–364 (2023). https://doi.org/10.1007/s42341-023-00456-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00456-6

Keywords

Navigation