Skip to main content
Log in

Thickness-Regulated Harmonious Effect on the Optical and Electrical Characteristics of ZnO Nano-Crystalline Thin Films for High Mobility Transparent Electrode

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of thickness modifications of zinc oxide (ZnO) thin films and the impressions over the electrical and optical characteristics were analyzed. ZnO thin films were deposited by the sol–gel spin coating method. For measuring the thickness of the films, a surface profilometer was operated. By maintaining an unvarying density of sol–gel (with 2% fabrication tolerance), the thin films were deposited on glass substrates. To identify the changes in optical variables, an ultraviolet–visible (UV–Vis) spectrophotometer was used. With the increment of deposition thickness, a nonlinear difference in skin depth has been observed. The bandgap showed a redshift and was in the range of 3.27–3.25 eV which is suitable for photonic applications. Electrical parameters were defined by ECOPIA Hall effect measurement system. The maximum measured sheet resistance in the current research is 5.43 × 107 (Ω/square) for 200 nm thin film. For 100 nm thickness, high mobility (221 cm2 V−1 s−1) and small resistivity (306.3) (Ω-cm) has been obtained. The above-mentioned high mobility and small resistivity are highly desirable for the transparent electrode of CIS solar cells and buffer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Jacobs, S. Muthukumar, A. PanneerSelvam, J. Engel Craven, S. Prasad, Ultra-sensitive electrical immunoassay biosensors using nanotextured zinc oxide thin films on printed circuit board platforms. Biosens. Bioelectron. 55, 7–13 (2014). https://doi.org/10.1016/j.bios.2013.11.022

    Article  CAS  Google Scholar 

  2. P. Luo, M. Xie, J. Luo, H. Kan, Q. Wei, Nitric oxide sensors using nanospiral ZnO thin film deposited by GLAD for application to exhaled human breath. RSC Adv. 10(25), 14877–14884 (2020). https://doi.org/10.1039/d0ra00488j

    Article  CAS  Google Scholar 

  3. M. Shkir et al., Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375–384 (2018). https://doi.org/10.1016/j.molstruc.2018.06.105

    Article  CAS  Google Scholar 

  4. C.H. Chung, T. Park, S. Lee, Thermal stability data of silver nanowire transparent conducting electrode. Data Brief. 12(30), 105422 (2020). https://doi.org/10.1016/j.dib.2020.105422

    Article  CAS  Google Scholar 

  5. M.B. Tahir, H. Javad, K. Nadeem, A. Majid, ZnO thin films: recent development, future perspectives and applications for dye sensitized solar cell. Surf. Rev. Lett. 25, 7 (2018). https://doi.org/10.1142/S0218625X19300016

    Article  CAS  Google Scholar 

  6. L.N.M.Z. Saputri, A.H. Ramelan, Q.A. Hanif, Y.I.F. Hasanah, L.B. Prajanira, S. Wahyuningsih, Optimalization activity of ZnO NR/TiO2 NR-P3HT as an active layer based on hybrid bulk heterojunction on dye sensitized solar cell (DSSC). AIP Conf. Proc. 1725, 3–10 (2016). https://doi.org/10.1063/1.4945530

    Article  Google Scholar 

  7. R. Agarwal, K.R. Ko, P.F. Gratzer et al., Biopatterning of keratinocytes in aqueous two-phase systems as a potential tool for skin tissue engineering. MRS Adv. 2, 2443–2449 (2017). https://doi.org/10.1557/adv.2017.357

    Article  CAS  Google Scholar 

  8. H.H. Singh, N. Khare, Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator. Nano Energy 51, 216–222 (2018). https://doi.org/10.1016/j.nanoen.2018.06.055

    Article  CAS  Google Scholar 

  9. L. Kang et al., La-doped p-type ZnO nanowire with enhanced piezoelectric performance for flexible nanogenerators. Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.01.025

    Article  Google Scholar 

  10. R. Bairy, P.S. Patil, S.R. Maidur, H. Vijeth, M.S. Murari, U.K. Bhat, The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications. RSC Adv. 9(39), 22302–22312 (2019). https://doi.org/10.1039/c9ra03006a

    Article  CAS  Google Scholar 

  11. B. Abdallah et al., Oxygen effect on structural and optical properties of ZnO thin films deposited by RF magnetron sputtering. Mater. Res. Ibero Am. J. Mater. 20, 607–612 (2017). https://doi.org/10.1590/1980-5373-MR-2016-0478

    Article  CAS  Google Scholar 

  12. P. Raizada, A. Sudhaik, P. Singh, Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater. Sci. Energy Technol. 2(3), 509–525 (2019). https://doi.org/10.1016/j.mset.2019.04.007

    Article  Google Scholar 

  13. D.B. Potter, M.J. Powell, I.P. Parkin, C.J. Carmalt, Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited: via aerosol assisted CVD. J. Mater. Chem. C 6(3), 588–597 (2018). https://doi.org/10.1039/c7tc04003b

    Article  CAS  Google Scholar 

  14. H. Alvi, Luminescence Properties of ZnO Nanostructures and Their Implementation as White Light Emitting Diodes (LEDs) Naveed ul Hassan Alvi, no. 1378 (2011)

  15. W.J. Jeong, S.K. Kim, G.C. Park, Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films 506–507, 180–183 (2006). https://doi.org/10.1016/j.tsf.2005.08.213

    Article  CAS  Google Scholar 

  16. Clean Energy Institute - University of Washington, “Copper Indium Selenide (CIS) Solar Cell” (2014). Available: https://www.cei.washington.edu/wordpress/wpcontent/uploads/2014/04/PVcelldisplaycards.pdf.

  17. S.K. Mishra, B.D. Gupta, Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing indium-tin oxide (ITO) thin films. Plasmonics 7(4), 627–632 (2012). https://doi.org/10.1007/s11468-012-9351-7

    Article  CAS  Google Scholar 

  18. M.F. Al-Kuhaili, Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma. J. Mater. Sci. Mater. Electron. 31(4), 2729–2740 (2020). https://doi.org/10.1007/s10854-019-02813-9

    Article  CAS  Google Scholar 

  19. J. Lian et al., Amorphous silicon on indium tin oxide: a transparent electrode for simultaneous light activated electrochemistry and optical microscopy. Chem. Commun. 55(1), 123–126 (2019). https://doi.org/10.1039/c8cc07889k

    Article  CAS  Google Scholar 

  20. Xu. Li et al., Study on structural and optical properties of Mn-doped ZnO thin films by sol–gel method. Opt. Mater. (2020). https://doi.org/10.1016/j.optmat.2020.109657

    Article  Google Scholar 

  21. M.R. Rahman, M.N. Uddin, T. Ashrafy et al., Tuning of Optical band gap: genesis of thickness regulated Al doped ZnO nano-crystalline thin films formulated by sol–gel spin coating approach. Trans. Electr. Electron. Mater. 23, 205–218 (2022)

    Article  Google Scholar 

  22. G. Wisz, I.S. Virt, P. Sagan, P. Potera, R. Yavorskyi, Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method. Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-017-2033-9

    Article  Google Scholar 

  23. J.I. Scott, R.F. Martinez-Gazoni, M.W. Allen, R.J. Reeves, Optical and electronic properties of high-quality Sb-doped SnO2 thin films grown by mist chemical vapor deposition. J. Appl. Phys. (2019). https://doi.org/10.1063/15116719

    Article  Google Scholar 

  24. M.N.H. Mia, M.F. Pervez, M. Khalid Hossain, M. Reefaz Rahman, M. Jalal Uddin, M.A. Al Mashud, H.K. Ghosh, M. Hoq, Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method. Results Phys. 7, 2683–2691 (2017). https://doi.org/10.1016/j.rinp.2017.07.047

    Article  Google Scholar 

  25. N.H. Mia, S.M. Rana, F. Pervez, M.R. Rahman, K. Hossain, A.A. Mortuza, M.K. Basher, M. Hoq, Preparation and spectroscopic analysis of zinc oxide nanorod thin films of different thicknesses. Mater. Sci. Pol. 35(3), 501–510 (2017). https://doi.org/10.1515/msp-2017-0066

    Article  CAS  Google Scholar 

  26. G. Hautier, A. Miglio, G. Ceder, G.M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 1–7 (2013). https://doi.org/10.1038/ncomms3292

    Article  CAS  Google Scholar 

  27. M.R. Rahman, et al., A comprehensive optical and electrical properties analysis of Mg doped ZnO nanocrystalline thin-films for optoelectronic applications, in 2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI) 1–6 (2020). https://doi.org/10.1009/icatmri51801.2020-9398515

  28. M.R. Rahman, T. Ashrafy, M.N. Uddin, M. Hoq, F. Alam, A.H. Jalal, Comprehensive Analysis of Conductive and Optically Transparent Sol-Gel Spin Coated Al3+ and Sn4+ Doped Zno Nano Crystalline Thin-Films. Available at SSRN 4412868

  29. N. Bahadur, A.K. Srivastava, S. Kumar, M. Deepa, B. Nag, Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films. Thin Solid Films 518(18), 5257–5264 (2010). https://doi.org/10.1016/j.tsf.2010.04.113

    Article  CAS  Google Scholar 

  30. R.K. Gupta, Z. Serbeti, F. Yakuphanoglu, Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films. J. Alloys Compd. 515, 96–100 (2012). https://doi.org/10.1016/j.jallcom.2011.11.098

    Article  CAS  Google Scholar 

  31. E. Tüzemen, S. Eker, H. Kavak, R. Esen, Dependence of film thickness on the structural and optical properties of ZnO thin films. Appl. Surf. Sci. 255, 6195–6200 (2009). https://doi.org/10.1016/j.apsusc.2009.01.078

    Article  CAS  Google Scholar 

  32. J. Lee, D.C. Sorescu, X. Deng, J. Phys. Chem. Lett. 7(7), 1335–1340 (2016). https://doi.org/10.1021/acs.jpclett.6b00432

    Article  CAS  Google Scholar 

  33. Y. Pan, Topological Origin of the Urbach Tail, no. March, p. 102, (2009). http://etd.ohiolink.edu/view.cgi?acc_num=ohiou1235514573. Available: http://etd.ohiolink.edu/send-pdf.cgi/Pan

  34. A.S. Gadallah, M.M. El-Nahass, Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating. Adv. Condens. Matter Phys. (2013). https://doi.org/10.1155/2013/234546

    Article  Google Scholar 

  35. A. Maqsood, M. Islam, M. Ikram, S. Salam, S. Ameer, Synthesis, characterization and hall effect measurements of nano-crystalline ZnO thin films. Key Eng. Mater. 510–511(1), 186–193 (2012). https://doi.org/10.4028/www.scientific.net/KEM.510-511.186

    Article  CAS  Google Scholar 

  36. S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, T. Yamada, Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition. Superlattices Microstruct. 39(1–4), 306–313 (2006). https://doi.org/10.1016/j.spmi.2005.08.069

    Article  CAS  Google Scholar 

  37. M. Bouderbala et al., Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Phys. B Condens. Matter 403(18), 3326–3330 (2008). https://doi.org/10.1016/j.physb.2008.04.045

    Article  CAS  Google Scholar 

  38. J.M. Myoung, W.H. Yoon, D.H. Lee, I. Yun, S.H. Bae, S.Y. Lee, Effects of thickness variation on properties of ZnO thin films grown by pulsed laser deposition. Jpn. J. Appl. Phys. Part Regul. Pap. Short Notes Rev. Pap. 41(1), 28–31 (2002). https://doi.org/10.1143/JJAP.41.28

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to concede the generous assistance from the Department of Glass and Ceramic Engineering (GCE) of Bangladesh University of Engineering and Technology (BUET), for SEM images and the Institute of Fuel Research & Development (IFRD) of Bangladesh Council of Scientific and Industrial Research (BCSIR), Bangladesh for XRD graphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reefaz Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.R., Uddin, M.N., Ashrafy, T. et al. Thickness-Regulated Harmonious Effect on the Optical and Electrical Characteristics of ZnO Nano-Crystalline Thin Films for High Mobility Transparent Electrode. Trans. Electr. Electron. Mater. 24, 323–329 (2023). https://doi.org/10.1007/s42341-023-00450-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00450-y

Keywords

Navigation