Skip to main content
Log in

Surface Plasmon Resonance-Based Fiber-Optic Hydrogen Gas Sensor Utilizing Indium–Tin Oxide (ITO) Thin Films

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report experimental study on an indium–tin oxide (ITO)-coated surface plasmon resonance-based fiber-optic hydrogen gas sensor operating at room temperature. The sensor works on intensity modulation interrogation. Indium–tin oxide (In2O3 + SnO2) films were grown on unclad core of the fiber by thermal evaporation technique. The surface plasmon resonance (SPR) spectra for 100 % nitrogen gas as well as for a mixture of 4 % hydrogen gas and 96 % nitrogen gas were obtained. In the case of mixture of hydrogen and nitrogen gases, a sharp dip in the SPR spectrum was observed implying that the hydrogen gas changes the dielectric properties of ITO. The performance of the sensor has been studied for different percentages of tin oxide in indium oxide and for different thicknesses of ITO film. Both the parameters have been optimized for the best performance of the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensor: review. Sens Actuators B 54:3–15

    Article  Google Scholar 

  2. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J 7:1118–1129

    Article  Google Scholar 

  3. Jorgenson RC, Yee SS (1993) A fiber optic chemical sensor based on surface plasmon resonance. Sens Actuators B 12:213–220

    Article  CAS  Google Scholar 

  4. Homola J, Slavik R (1996) Fiber optic sensor based on surface plasmon resonance. Electron Lett 32:480–482

    Article  CAS  Google Scholar 

  5. Cheng SF, Chau LK (2003) Colloidal gold-modified optical fiber for chemical and biochemical sensing. Anal Chem 75:16–21

    Article  CAS  Google Scholar 

  6. Kim YC, Peng W, Banerji S, Booksh KS (2005) Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt Lett 30:2218–2220

    Article  Google Scholar 

  7. Rajan, Chand S, Gupta BD (2006) Fabrication and characterization of a surface plasmon resonance based fiber optic sensor for bittering component- naringin. Sens Actuators B 115:344–348

  8. Rajan, Chand S, Gupta BD (2007) Surface plasmon resonance based fiber optic sensor for the detection of pesticide. Sens Actuators B 123:661–666

  9. Srivastava SK, Verma R, Gupta BD (2011) Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol. Sens Actuators B 153:194–198

    Article  Google Scholar 

  10. Bhatia P, Gupta BD (2011) Surface plasmon resonance based fiber optic refractive index sensor: sensitivity enhancement. Appl Opt 50:2032–2036

    Article  Google Scholar 

  11. Rhodes C, Franzen S, Maria JP, Losego M, Leonard DN, Laughlin B, Duscher G, Weibel S (2006) Surface plasmon resonance in conducting metal oxides. J Appl Phys 100:054905

    Article  Google Scholar 

  12. Rhodes C, Cerruti M, Efremenko A, Losego M, Aspens DE, Maria JP, Franzen S (2008) Dependence of plasmon polaritons on the thickness of ITO thin films. J Appl Phys 103:093108

    Article  Google Scholar 

  13. Franzen S, Rhodes C, Cerruti M, Gerber RW, Losego M, Maria JP, Aspens DE (2009) Plasmonic phenomenon in indium tin oxide and ITO-Au hybrid films. Opt Lett 34:2867–2869

    Article  CAS  Google Scholar 

  14. Verma RK, Gupta BD (2010) Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film. J Opt Soc Am A 27:846–851

    Article  CAS  Google Scholar 

  15. Gupta SK, Joshi A, Kaur M (2010) Development of gas sensors using ZnO nanostructures. J Chem Sci 122:57–62

    Article  CAS  Google Scholar 

  16. Patil GE, Kajale DD, Chavan DN, Pawar NK, Ahire PT, Shinde SD, Gaikwad VB, Jain GH (2011) Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis. Bull Mater Sci 34:1–9

    Article  CAS  Google Scholar 

  17. Suchea M, Katsarakis N, Christoulakis S, Nikolopoulo S, Kiriakidi G (2006) Low temperature indium oxide gas sensors. Sens Actuators B 118:135–141

    Article  Google Scholar 

  18. Maruyama T, Fukui K (1991) Indium tin oxide thin films prepared by chemical vapour deposition. Thin Solid Films 203:297–302

    Article  CAS  Google Scholar 

  19. Zheng JP, Kwok HS (1993) Low resistivity indium tin oxide films by pulsed laser deposition. Appl Phys Lett 63:1–3

    Article  CAS  Google Scholar 

  20. Ali MKM, Ibrahim K, Hamad OS, Eisa MH, Faraj MG, Azhari F (2011) Deposited indium tin oxide (ITO) thin films by dc-magnetron sputtering on polyethylene terephthalate substrate (PET). Rom J Phys 56:730–741

    CAS  Google Scholar 

  21. Korotcenkov G, Brinzari V, Schwank J, DiBattista M, Vasiliev (2001) Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sens Actuators B 77:244–252

    Article  Google Scholar 

  22. Bevenot X, Trouillet A, Veillas C, Gagnaire H, Clement M (2000) Hydrogen leak detection using an optical fiber sensor for aerospace applications. Sens Actuators B 67:57–67

    Article  Google Scholar 

  23. Neri G, Bonavita A, Micali G, Rizzo G, Pinna N, Niederberger M, Ba J (2008) Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method. Sens Actuators B 130:222–230

    Article  Google Scholar 

  24. Patel NG, Patel PD, Vaishnav VS (2003) Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sens Actuators B 96:180–189

    Article  Google Scholar 

Download references

Acknowledgments

The present work is partially supported by the Council of Scientific and Industrial Research (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banshi D. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S.K., Gupta, B.D. Surface Plasmon Resonance-Based Fiber-Optic Hydrogen Gas Sensor Utilizing Indium–Tin Oxide (ITO) Thin Films. Plasmonics 7, 627–632 (2012). https://doi.org/10.1007/s11468-012-9351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9351-7

Keywords

Navigation