Skip to main content
Log in

Ferroelectricity Based Memory Devices: New-Generation of Materials and Applications

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The key challenges in developing non-volatile memories are to ensure their compatibility with CMOS processing and to minimize complexity. HfO2 materials have many advantages over perovskite ferroelectric materials. The memory performance, fatigue characteristics, and leakage current of HfO2 based on different doping materials have been investigated. The predominant dopants are Si Al Zr. The ferroelectric effect is notorious when the concentration of Si and Al doping is about 4%. When the content of Zr is 50%, Zr: HfO2 in FeFET with its ferroelectric layer achieved a higher memory window, and the fatigue characteristics are at least 3 orders of magnitude higher than in other devices. Recent ferroelectric breakthroughs and prospective future-generation comparisons have been concluded, which are essential for the development of ferroelectric memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Arden, Curr. Opin. Solid State. 6, 371 (2002). https://doi.org/10.1016/S1359-0286. (02)00116-X ]

    Article  Google Scholar 

  2. Y. Fujisaki, Jpn. J. Appl. Phys. 49, 100001 (2010). https://doi.org/10.1143/JJAP.49.100001]

    Article  Google Scholar 

  3. B. Hoefflinger, Chips 2020 (Springer, 2011), p. 161

  4. H.A. Hsain, Y. Lee, M. Materano, T. Mittmann, A. Payne, T. Mikolajick, U. Schroeder, G.N. Parsons, J.L. Jones, J. Vacuum Sci. Technol. A: Vacuum Surf. Films. 40, 010803 (2022). https://doi.org/10.1116/6.0001317]

    Article  CAS  Google Scholar 

  5. A.S. Bhalla, A. Saxena, Phys. World. 33, 38 (2021). https://doi.org/10.1088/2058-7058/33/11/31]

    Article  Google Scholar 

  6. S. Sakai, M. Takahashi, Materials. 3, 4950 (2010). https://doi.org/10.3390/ma3114950]

    Article  CAS  Google Scholar 

  7. B. Jiang, M. Tang, J. Li, Y. Xiao, Z. Tang, H. Cai, X. Lv, Y. Zhou, J. Phys. D 45, 025102 (2011). https://doi.org/10.1088/0022-3727/45/2/025102

    Article  CAS  Google Scholar 

  8. W. Shih, K. Kang, J.Y. Lee, Appl. Phys. Lett. 91, 232908 (2007). https://doi.org/10.1063/1.2822809]

    Article  Google Scholar 

  9. W. Kim, H. Lee, H. Park, Y. Hwang, Ferroelectrics. 413, 1 (2011). https://doi.org/10.1080/00150193.2011.568308]

    Article  CAS  Google Scholar 

  10. R.E. Cohen, Nature. 358, 136 (1992). https://doi.org/10.1038/358136a0

    Article  CAS  Google Scholar 

  11. J. Chen, K.S. Ho, J. Lin, T.A. Rabson, Integr. Ferroelectr. 10, 215 (1995). https://doi.org/10.1080/10584589508012278]

    Article  CAS  Google Scholar 

  12. T. Hirai, K. Teramoto, T. Nishi, T. Goto, Y. Tarui, Jpn. J. Appl. Phys. 33, 5219 (1994). https://doi.org/10.1143/JJAP.33.5219

    Article  CAS  Google Scholar 

  13. H. Zeng, K. Shimamura, C. Kannan, E. Villora, S. Takekawa, K. Kitamura, Appl. Phys. A 85, 173 (2006). https://doi.org/10.1007/s00339-006-3682-1

    Article  CAS  Google Scholar 

  14. T. Yoshimura, N. Fujimura, D. Ito, T. Ito, J. Appl. Phys. 87, 3444 (2000). https://doi.org/10.1063/1.372364]

    Article  CAS  Google Scholar 

  15. M.T. Buscaglia, L. Mitoseriu, V. Buscaglia, I. Pallecchi, M. Viviani, P. Nanni, A.S. Siri, J. Eur. Ceram. Soc. 26, 3027 (2006). https://doi.org/10.1016/j.jeurceramsoc.2006.02.023]

    Article  CAS  Google Scholar 

  16. K. Amanuma, T. Hase, Y. Miyasaka, Appl. Phys. Lett. 66, 221 (1995). https://doi.org/10.1063/1.113140]

    Article  CAS  Google Scholar 

  17. N. Kim, C. Song, S. Kweon, E. Choi, S. Lee, S. Yeom, J. Roh, Integr. Ferroelectr. 47, 177 (2002). https://doi.org/10.1080/10584580215404]

    Article  CAS  Google Scholar 

  18. H.J. Kim, S.H. Oh, H.M. Jang, Appl. Phys. Lett. 75, 3195 (1999). https://doi.org/10.1063/1.125275]

    Article  CAS  Google Scholar 

  19. K. Abe, S. Komatsu, J. Appl. Phys. 77, 6461 (1995). https://doi.org/10.1063/1.359120]

    Article  CAS  Google Scholar 

  20. Y. Masuda, T. Nozaka, Jpn. J. Appl. Phys. 42, 5941 (2003). https://doi.org/10.1143/JJAP.42.5941]

    Article  CAS  Google Scholar 

  21. X. Lu, J. Yoon, H. Ishiwara, J. Appl. Phys. 105, 084101 (2009). https://doi.org/10.1063/1.3097691]

    Article  Google Scholar 

  22. J.F. Ihlefeld, D.T. Harris, R. Keech, J.L. Jones, J. Maria, S. Trolier, McKinstry, J. Am. Ceram. Soc. 99, 2537 (2016). https://doi.org/10.1111/jace.14387]

    Article  CAS  Google Scholar 

  23. U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, T. Mikolajick, ECS J. Solid State Sci. Technol. 2, N69 (2013). https://doi.org/10.1149/2.010304jss]

    Article  CAS  Google Scholar 

  24. C. Guo, D. Zhang, H. Liu, H. Xu, Y. Liu, Y. Fu, D. Qingping, W. Dongni, J. Wei, J. Artif. Cryst. 49, 39 (2020). https://doi.org/10.3969/j.issn.1000-985X.2020.01.006]

    Article  CAS  Google Scholar 

  25. U. Valiyaneerilakkal, S. Cherumannil Karumuthil, K. Singh, L. Bhanuprakash, R. Komaragiri, S. Varghese, Nano Select. (2021). https://doi.org/10.1002/nano.202100081]

    Article  Google Scholar 

  26. S.J. Kang, Y.J. Park, I. Bae, K.J. Kim, H.C. Kim, S. Bauer, E.L. Thomas, C. Park, Adv. Funct. Mater. 19, 2812 (2009). https://doi.org/10.1002/adfm.200900589

    Article  CAS  Google Scholar 

  27. Z. Jiang, G. Zheng, Z. Han, Y. Liu, J. Yang, J. Appl. Phys. 115, 204101 (2014). https://doi.org/10.1063/1.4878935

    Article  CAS  Google Scholar 

  28. H.W. Song, K. No, J. Korean Phys. Soc. 58, 809 (2011). https://doi.org/10.3938/jkps.58.809

    Article  CAS  Google Scholar 

  29. J. Zhai, H. Chen, Appl. Phys. Lett. 82, 442 (2003). https://doi.org/10.1063/1.1539928]

    Article  CAS  Google Scholar 

  30. J. Celinska, V. Joshi, S. Narayan, L. McMillan, C. Paz, de Araujo, Appl. Phys. Lett. 82, 3937 (2003). https://doi.org/10.1063/1.1579559]

    Article  CAS  Google Scholar 

  31. P. Polakowski, J. Müller, Appl. Phys. Lett. 106, 232905 (2015). https://doi.org/10.1063/1.4922272]

    Article  Google Scholar 

  32. C. Cheng, A. Chin, IEEE Electron Device Lett. 35, 138 (2013). https://doi.org/10.1109/LED.2013.2290117]

    Article  Google Scholar 

  33. X. Lou, J. Appl. Phys. 105, 024101 (2009). https://doi.org/10.1063/1.3056603]

    Article  Google Scholar 

  34. M. Mai, S. Ke, P. Lin, X. Zeng, J. Nanomaterials. 2015 (2015). https://doi.org/10.1155/2015/812538]

  35. M. Li, N. Stingelin, J.J. Michels, M.J. Spijkman, K. Asadi, K. Feldman, P.W. Blom, D.M. De Leeuw, Macromolecules. 45, 7477 (2012). https://doi.org/10.1021/ma301460h]

    Article  CAS  Google Scholar 

  36. L. Xubing, L. Ming, L. Xuming, J. South China Normal Univ. 44, 0 (2012). https://doi.org/10.6054/j.jscnun.2012.06.001]

    Article  Google Scholar 

  37. M. Trentzsch, S. Flachowsky, R. Richter, J. Paul, B. Reimer, D. Utess, S. Jansen, H. Mulaosmanovic, S. Müller, S. Slesazeck, in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), pp. 11.5. 1

  38. S.V. Ushakov, A. Navrotsky, Y. Yang, S. Stemmer, K. Kukli, M. Ritala, M. Leskelä, P. Fejes, A. Demkov, C. Wang, Phys. Status Solidi. 241, 2268 (2004). https://doi.org/10.1002/pssb.200404935]

    Article  CAS  Google Scholar 

  39. J. Muller, T.S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, Nano Lett. 12, 4318 (2012). https://doi.org/10.1021/nl302049k]

    Article  Google Scholar 

  40. Q. Luo, T. Gong, Y. Cheng, Q. Zhang, H. Yu, J. Yu, H. Ma, X. Xu, K. Huang, X. Zhu, in 2018 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2018), pp. 2.6. 1

  41. Y. Peng, W. Xiao, Y. Liu, C. Jin, X. Deng, Y. Zhang, F. Liu, Y. Zheng, Y. Cheng, B. Chen, IEEE Electron Device Lett. (2021). https://doi.org/10.1109/LED.2021.3135961]

    Article  Google Scholar 

  42. M.K. Kim, I.J. Kim, J.S. Lee, Sci. Adv. 7, eabe1341 (2021). https://doi.org/10.1126/sciadv.abe1341]

    Article  CAS  Google Scholar 

  43. K. Florent, S. Lavizzari, L. Di Piazza, M. Popovici, E. Vecchio, G. Potoms, G. Groeseneken, J. Van, IHoudt, in 2017 Symposium on VLSI Technology (IEEE, 2017), pp. T158

  44. W.C. Yap, H. Jiang, J. Liu, Q. Xia, W. Zhu, Appl. Phys. Lett. 111, 013103 (2017). https://doi.org/10.1063/1.4991877]

    Article  Google Scholar 

  45. Q. Yu, Z. Jun, Z. Yunxia, L. Kang, Z. Yu, Materials Reports 35, 2001 (2021). [doi: https://doi.org/10.11896/cldb.20020160]

  46. E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. van Bentum, U. Schroeder, T. Mikolajick, IEEE Trans. Electron. Devices. 63, 3501 (2016). https://doi.org/10.1109/TED.2016.2588439]

    Article  CAS  Google Scholar 

  47. L. Grenouillet, T. Francois, J. Coignus, N. Vaxelaire, C. Carabasse, F. Triozon, C. Richter, U. Schroeder, E. Nowak, in 2020 IEEE Silicon Nanoelectronics Workshop (SNW) (IEEE, 2020), pp. 5

  48. T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, Appl. Phys. Lett. 112, 222903 (2018). https://doi.org/10.1063/1.5026715]

    Article  Google Scholar 

  49. B. Ku, S. Choi, Y. Song, C. Choi, in 2020 IEEE Symposium on VLSI Technology (IEEE, 2020), pp. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsin Yi.

Ethics declarations

Conflict of interest

There is no existing conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Rabelo, M., Kim, T. et al. Ferroelectricity Based Memory Devices: New-Generation of Materials and Applications. Trans. Electr. Electron. Mater. 24, 271–278 (2023). https://doi.org/10.1007/s42341-023-00445-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00445-9

Keywords

Navigation