Skip to main content
Log in

Studies on Structural, Dielectric, and Optical Properties of the Lanthanum Modified BF-BNT Perovskite for the Thermistor and Photovoltaic Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The modified structure of BF-BNT (Bi0.5La0.5Fe)0.25(Bi0.5Na0.5Ti)0.75O3) single perovskite is prepared by a conventional solid-state reaction technique. The structural analysis suggests a tetragonal crystal with space group P4bm (JCPDS file No. 01-070-4760). The average crystallite and lattice strains are 87.2 nm and 0.116% respectively. The dielectric study predicts negative temperature coefficient of resistance character while the presence of low dielectric loss makes the materials useful for energy storage devices. The analysis of the modulus study suggests the presence of a non-Debye type of relaxation process while a thermally activated relaxation process is confirmed from the study of ac conductivity. The presence of the depressed semicircular arcs in both Nyquist and Cole–Cole plots confirms the semiconductor nature of the sample. The study of the Raman spectrum confirms the presence of all atomic vibrations. The UV visible study provides the energy bandgap of 1.67 eV, suitable for the different optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Jona, G. Shirane, Ferroelectric Crystals (MacMillan, New York, 1962)

    Google Scholar 

  2. A.P. Alivisatos, Semiconductor clusters nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  CAS  Google Scholar 

  3. I.V. Solovyev, K. Terakura, Spin canting in three-dimensional perovskite manganites. Phys. Rev. B. 63, 174425–174432 (2001)

    Article  Google Scholar 

  4. R. Migoni, H. Bilz, D. Bauerle, Origin of Raman scattering and ferroelectricity in oxidic perovskite. Phys. Rev. Lett. 37, 1155–1158 (1976)

    Article  CAS  Google Scholar 

  5. V. Garcia, S. Fusil, K.S. Bouzehouane, N.D. Mathur, A. Barthelemy, M. Bibes, Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009)

    Article  CAS  Google Scholar 

  6. J.C. Loudon, N.D. Mathur, P.A. Midgley, Charge-ordered ferromagnetic phase in La0.5 Ca0.5MnO3. Nature 420, 797–800 (2002)

  7. J.Z. Sun, D.W. Abraham, R.A. Rao, C.B. Eom, Thickness-dependent magneto-transport in ultrathin manganite films. Appl. Phys. Lett. 74, 3017–3019 (1999)

    Article  CAS  Google Scholar 

  8. M.N. Rahman, R. Manalert, Grain boundary mobility of BaTiO3 doped with aliovalent cations. J. Eur. Ceram. Soc. 18, 1063–1071 (1998)

    Article  Google Scholar 

  9. A. Biswas, S. Chandra, M.H. Phan, H. Srikanth, Magnetocaloric properties of nanocrystalline LaMnO3: enhancement of refrigerant capacity and relative cooling power. J. Alloys. Compd. 545, 157–161 (2012)

    Article  CAS  Google Scholar 

  10. A. Selmi, R. M’nassri, W.C. Koubaa, N.C. Boudjada, A. Cheikhouhou, Influence of transition metal doping (Fe Co, Ni, and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO.3 manganites. Ceram. Int. 41, 10177–10184 (2015)

    Article  CAS  Google Scholar 

  11. B.H. Park, S.J. Hyun, S.D. Bu, T.W. Noh, J. Lee, H.D. Kim, T.H. Kim, W. Jo, Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl. Phys. Lett. 74, 1907 (1999)

    Article  CAS  Google Scholar 

  12. J.-C. Yang, Q. He, P. Yu, Y.-H. The Chu, BiFeO3 thin films: a playground for exploring electric-field control of multifunctionalities. Annu. Rev. Mater. Res. 45, 249–275 (2015)

    Article  CAS  Google Scholar 

  13. M. Kumar, S. Shankar, R.K. Kotnala, O. Parkash, Evidence of magneto-electric coupling in BFO–BT solid solutions. J. Alloys Compd. 577, 222–227 (2013)

    Article  CAS  Google Scholar 

  14. J.-G. Park, M.D. Le, J. Jeong, S. Lee, Structure and spin dynamics of multiferroic BiFeO3. J. Phys. Condens. Matter. 26, 433202 (2014)

    Article  Google Scholar 

  15. K.Y. Yun, D. Ricinschi, T. Kawashima, M. Noda, M. Okuyama, Giant ferroelectric polarization beyond 150 µC/cm2 in BiFeO3 thin film. Jpn. J. Appl. Phys. 43, L647–L648 (2004)

    Article  CAS  Google Scholar 

  16. H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh, S.-W. Cheong, Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 23, 3403–3407 (2011)

    Article  CAS  Google Scholar 

  17. J. Wang, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 80(299), 1719–1722 (2003)

    Article  Google Scholar 

  18. S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, Comparative studies of pure BiFeO3 prepared by sol-gel versus conventional solid-state-reaction method. J. Mater. Sci. Mater. Electron. 25, 1915–1921 (2014)

    Article  CAS  Google Scholar 

  19. T. Wang, T. Xu, S. Gao, S.-H. Song, Effect of Nd and Nb co-doping on the structural, magnetic, and optical properties of multiferroic BiFeO3 nanoparticles prepared by sol-gel method. Ceram. Int. 43, 4489–4495 (2017)

    Article  CAS  Google Scholar 

  20. K. Chakrabarti, K. Das, B. Sarkar, S.K. De, Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol-gel method. J. Appl. Phys. 110, 103905 (2011)

    Article  Google Scholar 

  21. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Investigation of transport behavior in Ba doped BiFe03. Ceram. Int. 38, 3829–3834 (2012)

    Article  CAS  Google Scholar 

  22. Z. Cheng, X. Wang, S. Dou, H. Kimura, K. Ozawa, Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb co-doping. Phys. Rev. B 77, 092101 (2008)

    Article  Google Scholar 

  23. M. Shami, M. Awan, M. Anis-ur-Rehman, Effect of sintering temperature on nanostructured multiferroic BiFeO3 ceramics. Key Eng. Mater. 510, 348–355 (2012)

    Article  Google Scholar 

  24. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  25. K. Mishra, A. Satya, A. Bharathi, V. Sivasubramanian, V. Murthy, A. Arora, Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3–PbTiO3. J. Appl. Phys. 110, 123529 (2011)

    Article  Google Scholar 

  26. R. Rai, I. Bdikin, M.A. Valente, A.L. Kholkin, Ferroelectric and ferromagnetic properties of Gd-doped BiFe)-3BaTi)3 solid solution. Mater. Chem. Phys. 119, 539–545 (2010)

    Article  CAS  Google Scholar 

  27. R.J.H. Voorhoeve, Advanced Materials in Catalysis (Acadamic Press, London, 1977), p. 129

    Book  Google Scholar 

  28. R.I. Hines, in Atomistic Simulation and Ab-Initio Studies of Polar Solids. Ph.d., Bristol (1997).

  29. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A A32, 751–767 (1976)

    Article  CAS  Google Scholar 

  30. S.K. Parida, M.K. Swain, R.K. Bhuyan, B. Kisan, R.N.P. Choudhary, Effect of cerium on structural and dielectric properties of the modified BiFeO3–PbTiO3 ceramics for photovoltaic applications. J. Electron. Mater. 50, 4685–4695 (2021)

    Article  CAS  Google Scholar 

  31. S.K. Parida, Studies on structural, dielectric, and optical properties of Cu/W double substituted calcium manganite for solar cells and thermistor applications. Phase Transit. 94, 1033–1052 (2021)

    Article  CAS  Google Scholar 

  32. S.K. Parida, Structural, electrical and optical properties of zinc and tungsten modified lead titanate ceramics. SPIN 11, 2150018–2150114 (2021)

    Article  CAS  Google Scholar 

  33. P.R. Pansara, P.Y. Raval, N.H. Vasoya, S.N. Dolia, K.B. Modi, Intriguing structural and magnetic properties correlation study on Fe3+ substituted calcium-copper-titanate. Phys Chem. Chem. Phys. 20, 1914–1922 (2018)

    Article  CAS  Google Scholar 

  34. P.G.R. Achary, A.A. Nayak, R.K. Bhuyan, R.N.P. Choudhary, S.K. Parida, Effect of cerium dopant on the structural and electrical properties of SrMnO3 single perovskite. J. Mol. Struct. 1226, 129391–129399 (2021)

    Article  CAS  Google Scholar 

  35. S.K. Parida, R.N.P. Choudhary, Preparation method and cerium dopant effects on the properties of BaMnO3 single perovskite. Phase Transit. 93(10–11), 981–991 (2020)

    Article  CAS  Google Scholar 

  36. A. Khlifi, R. Hanen, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, A. Cheikhrouhou, Investigations of electrical properties of Pr0.65Ca0.25Cd0.1MnO3 ceramic. Eur. Phys. J. Plus 135, 790–794 (2020)

    Article  CAS  Google Scholar 

  37. P. Ganga Raju Achary, R.N.P. Choudhary, S.K. Parida, Investigation of structural and dielectric properties in polycrystalline PbMg1/3 Ti1/3W1/3O3 tungsten perovskite. SPIN 10(3), 2050021–2050110 (2020)

    Article  Google Scholar 

  38. Q. Ke, X. Lou, Y. Wang, J. Wang, Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin film. Phys. Rev. B Condens. Matter Mater. Phys 82, 024102–024107 (2010)

    Article  Google Scholar 

  39. C. Zhao, B. Wang, P. Yang, L. Winnubst, C. Chen, Effects of Cu and Zn Co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics. J. Eur. Ceram. Soc. 28, 35–40 (2008)

    Article  CAS  Google Scholar 

  40. W. Cao, R. Gerhardt, Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ionics 42, 213–221 (1990)

    Article  CAS  Google Scholar 

  41. R.N. Jadhav, S.N. Mathad, V. Puri, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38, 5181–5188 (2012)

    Article  CAS  Google Scholar 

  42. C. Toulouse, D. Amoroso, C. Xin, P. Veber, M.C. Hatnean, G. Balakrishnan, M. Maglione, P. Ghosez, J. Kreisel, M. Guennou, Lattice dynamics and Raman spectrum of BaZrO3 single crystals. Phys. Rev. B 100, 134102–134105 (2019)

    Article  CAS  Google Scholar 

  43. A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, B. Sahoo, Effect of the bandgap and the defect states present within bandgap on the non-linear optical absorption behavior of yttrium aluminum iron garnets. Opt. Mater. 108, 110163 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For XRD, the authors would like to extend sincere gratitude to the host Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Parida.

Ethics declarations

Conflict of interest

There is no conflict of interest as declared by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, S.K. Studies on Structural, Dielectric, and Optical Properties of the Lanthanum Modified BF-BNT Perovskite for the Thermistor and Photovoltaic Applications. Trans. Electr. Electron. Mater. 23, 632–641 (2022). https://doi.org/10.1007/s42341-022-00396-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-022-00396-7

Keywords

Navigation