Skip to main content
Log in

Switching Performance Investigation of a Gate-All-Around Core-Source InGaAs/InP TFET

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

A novel core-source gate-all-around TFET based on InGaAs/InP heterojunction is presented in this paper. In the proposed device, the main current flow mechanism is line tunneling which occurs across a heterojunction composed of a narrow-bandgap material of source and a wide-bandgap material of channel. The off-state current and ambipolar conduction are diminished by simultaneously employing two different doping concentrations in the channel region, as well as a wide-bandgap material in drain region. We study the switching performance of the device using a calibrated numerical device simulator. The results indicate impressive performance of the proposed transistor, including an extremely steep subthreshold swing, sub 3mv/dec over 5 decades and sub 60mv/dec over 9 decades of drain current, and average subthreshold swing of about 27mv/dec, and an on-state to off-state current ratio of about 1011 at VGS = 0.3 V. The impact of variations in the device dimensions, doping and bias condition on its electrical characteristics is also studied and discussed physically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source region and b n-channel region

Fig. 7
Fig. 8
Fig. 9
Fig. 10

source Cgs, gate to drain Cgd, and total gate Cgg capacitances, b transconductance, and c cut-off frequency of CSTFET at VDS = 0.3 V

Similar content being viewed by others

References

  1. M. Saremi, A. Afzali-Kusha, S. Mohammadi, Ground plane fin-shaped field effect transistor (GP-FinFET): A FinFET for low leakage power circuits. Microelec. Eng. 95, 74–82 (2012)

    Article  CAS  Google Scholar 

  2. J. Lee, R. Lee, S. Kim, E. Park, H.-M. Kim, K. Lee, S. Kim, B.-G. Park, Fabrication methods for nanowire tunnel FET with locally concentrated Silicon-germanium channel. J. Semicond. Technol. Sci. 19(1), 18–23 (2019). https://doi.org/10.5573/JSTS.2019.19.1.018

    Article  Google Scholar 

  3. S. Glass, N. von den Driesch, K. Narimani, D. Buca, G. Mussler, S. Mantl, Q.-T. Zhao, SiGe based line tunneling field-effect transistors. Compos. nanoélectroniques 18(1), 1–10 (2018)

    Article  Google Scholar 

  4. S. Blaeser, S. Glass, K. Narimani, N. Driesch, S. Wirths, T. Tiedemann, S. Trellenkamp, D. Buca, Q.T. Zhao, S. Mantl, P.G.I. Pgi-, F. Jülich, Novel SiGe/Si line tunneling TFET with high I on at low V DD and constant SS. IEEE Int. Electron. Devices. Meeting. IEDM. 9(2), 608–611 (2015)

    Google Scholar 

  5. A.M. Walke, A. Vandooren, R. Rooyackers, D. Leonelli, A. Hikavyy, R. Loo, A.S. Verhulst, K.H. Kao, C. Huyghebaert, G. Groeseneken, V.R. Rao, K.K. Bhuwalka, M.M. Heyns, N. Collaert, A.V.Y. Thean, Fabrication and analysis of a Si/Si0.55Ge0.45 heterojunction line tunnel FET. IEEE Trans. Electron. Devices. 61(3), 707–715 (2014). https://doi.org/10.1109/TED.2014.2299337

    Article  CAS  Google Scholar 

  6. V. Brouzet, B. Salem, P. Periwal, R. Alcotte, F. Chouchane, F. Bassani, T. Baron, G. Ghibaudo, Fabrication and electrical characterization of homo-and hetero-structure Si/SiGe nanowire Tunnel Field Effect Transistor grown by vapor–liquid–solid mechanism. Solid. State. Electron. 118, 26–29 (2016). https://doi.org/10.1016/j.sse.2016.01.005

    Article  CAS  Google Scholar 

  7. G. Dewey, B. Chu-Kung, J. Boardman, J.M. Fastenau, J. Kavalieros, R. Kotlyar, W.K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H.W. Then, R. Chau, Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. Technical Digest-Int. Electron. Devices. Meeting. IEDM. 3, 785–788 (2011). https://doi.org/10.1109/IEDM.2011.6131666

    Article  Google Scholar 

  8. A.N. Hanna, H.M. Fahad, M.M. Hussain, InAs/Si Hetero-Junction Nanotube Tunnel Transistors. Sci. Rep. 5, 9843 (2015). https://doi.org/10.1038/srep09843

    Article  CAS  Google Scholar 

  9. T. Vasen, P. Ramvall, A. Afzalian, G. Doornbos, M. Holland, C. Thelander, K.A. Dick, L.-E. Wernersson, M. Passlack, Vertical Gate-All-Around Nanowire GaSb-InAs Core-Shell n-Type Tunnel FETs. Sci. Rep. 9(1), 202 (2019). https://doi.org/10.1038/s41598-018-36549-z

    Article  CAS  Google Scholar 

  10. P.-C. Shih, W.-C. Hou, J.-Y. Li, A U-Gate InGaAs/GaAsSb Heterojunction TFET of Tunneling Normal to the Gate With Separate Control Over ON- and OFF-State Current. IEEE Electron Device Lett. 38(12), 1751–1754 (2017). https://doi.org/10.1109/LED.2017.2759303

    Article  CAS  Google Scholar 

  11. A. D. Es-Sakhi and M. H. Chowdhury, “Multichannel Tunneling Carbon Nanotube Field Effect Transistor (MT-CNTFET),” in 27th IEEE International System-on-Chip Conference (SOCC), pp. 156–159 (2014). https://doi.org/10.1109/SOCC.2014.6948918.

  12. N.V. Karimi, Y. Pourasad, Tunneling Carbon Nanotube Field Effect Transistor with Asymmetric Graded Double Halo Doping in Channel: Asym-GDH-T-CNTFET. Procedia Mater. Sci. 11, 287–292 (2015). https://doi.org/10.1016/j.mspro.2015.11.064

    Article  CAS  Google Scholar 

  13. F. Giannazzo, G. Greco, F. Roccaforte, S. Sonde, Vertical Transistors Based on 2D Materials: Status and Prospects. Crystals 8(2), 70 (2018). https://doi.org/10.3390/cryst8020070

    Article  CAS  Google Scholar 

  14. Z. Yang, Tunnel Field-Effect Transistor With an L-Shaped Gate. IEEE Electron. Device. Lett. 37(7), 839–842 (2016). https://doi.org/10.1109/LED.2016.2574821

    Article  CAS  Google Scholar 

  15. W. Wang, P. Wang, C. Zhang, X. Lin, X. Liu, Q.-Q. Sun, P. Zhou, D.W. Zhang, Design of U-Shape Channel Tunnel FETs With SiGe Source Regions. IEEE Trans. Electron Devices. 61(1), 193–197 (2014). https://doi.org/10.1109/TED.2013.2289075

    Article  CAS  Google Scholar 

  16. S. Chen, S. Wang, H. Liu, W. Li, Q. Wang, X. Wang, Symmetric U-Shaped Gate Tunnel Field-Effect Transistor. IEEE Trans. Electron Devices. 64(3), 1343–1349 (2017). https://doi.org/10.1109/TED.2017.2647809

    Article  CAS  Google Scholar 

  17. S.W. Kim, J.H. Kim, T.K. Liu, W.Y. Choi, B. Park, Demonstration of L-Shaped Tunnel Field-Effect Transistors. IEEE Trans. Electron Devices 63(4), 1774–1778 (2016). https://doi.org/10.1109/TED.2015.2472496

    Article  CAS  Google Scholar 

  18. R.M. Imenabadi, M. Saremi, W.G. Vandenberghe, A Novel PNPN-Like Z-Shaped Tunnel Field- Effect Transistor with Improved Ambipolar Behavior and RF Performance. IEEE Trans. Electron Devices 64, 4752–4758 (2017)

    Article  CAS  Google Scholar 

  19. M. Imenabadi, M. Saremi, A Resonant Tunneling Nanowire Field Effect Transistor with Physical Contractions: A Negative Differential Resistance Device for Low Power Very Large Scale Integration Applications. J. Electronic Materials 47, 1091–1098 (2018)

    Article  Google Scholar 

  20. G. Musalgaonkar, S. Sahay, R.S. Saxena, M.J. Kumar, Nanotube Tunneling FET With a Core Source for Ultrasteep Subthreshold Swing: A Simulation Study. IEEE Trans. Electron Devices 66(10), 4425–4432 (2019). https://doi.org/10.1109/TED.2019.2933756

    Article  CAS  Google Scholar 

  21. J. Yoon, K. Kim, C. Baek, Core-shell homojunction silicon vertical nanowire tunneling field- effect transistors. Nat. Publ. Gr. 23(7), 1–9 (2017). https://doi.org/10.1038/srep41142

    Article  CAS  Google Scholar 

  22. M.J.K. Gaurav Musalgaonkar, S. Sahay, R.S. Saxena, A Line Tunneling Field-Effect Transistor Based on Misaligned Core-Shell Gate Architecture in Emerging Nanotube FETs. IEEE Trans. Electron Devices 66(6), 1–9 (2019)

    Google Scholar 

  23. S. Agarwal, J.T. Teherani, J.L. Hoyt, D.A. Antoniadis, E. Yablonovitch, Engineering the Electron-Hole Bilayer Tunneling Field-Effect Transistor. IEEE Trans. Electron Devices 61(5), 1599–1606 (2014). https://doi.org/10.1109/TED.2014.2312939

    Article  CAS  Google Scholar 

  24. J.L. Padilla, C. Medina-Bailon, C. Alper, F. Gamiz, A.M. Ionescu, Confinement-induced InAs/GaSb heterojunction electron–hole bilayer tunneling field-effect transistor. Appl. Phys. Lett. 112(18), 182101 (2018). https://doi.org/10.1063/1.5012948

    Article  CAS  Google Scholar 

  25. W.J. Jeong, T.K. Kim, J.M. Moon, M.G. Park, Germanium electron–hole bilayer tunnel fi eld-effect transistors with a symmetrically arranged double gate. Semicond. Sci. Technol. 30(3), 035021 (2015). https://doi.org/10.1088/0268-1242/30/3/035021

    Article  CAS  Google Scholar 

  26. D. S. SOFTWARE, Device Simulator Atlas: Atlas User’s Manual. Silvaco, Inc (2016)

  27. M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters. World Scientific Publishing Co. Pte. Ltd (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keighobadi, D., Mohammadi, S. & Mohtaram, M. Switching Performance Investigation of a Gate-All-Around Core-Source InGaAs/InP TFET. Trans. Electr. Electron. Mater. 22, 502–508 (2021). https://doi.org/10.1007/s42341-020-00257-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00257-1

Keywords

Navigation