Skip to main content
Log in

Design and Analysis of AlGaN/GaN Based DG MOSHEMT for High-Frequency Application

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, AlGaN/GaN based DG MOSHEMT is designed at 0.8 µm gate length with Al2O3 gate dielectric. The key device performance parameter such as gm, AV, fT, and fmax has been investigated using 2D Mixed-Mode Sentaurus TCAD device simulation. The use of the double heterostructure helps to achieve higher on-current. We observe a double hump type feature in transconductance which is attributed to occurrence of the double 2-DEG, resulting in better device linearity. Further, the double gate structure is responsible for nearly ideal subthreshold slope (~ 59.94 mV/dec) and higher Ion/Ioff ratio (> 1016). Moreover, the device offers comparable cut-off frequency (19.25 GHz) and maximum-oscillation frequency (66.95 GHz) to the existing Al2O3/AlGaN/GaN based SG MOSHEMT alongwith tremendous improvement in terms of intrinsic gain (~ 76 dB). Furthermore, enhancement of the device performance (fT = 122.44 GHz and fmax = 163.07 GHz) is achieved by scaling down the gate length from 0.8 µm to 100 nm. These results indicate that Al2O3/AlGaN/GaN based DG MOSHEMT can be possible alternative for millimeter and microwave frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, Hoboken, 2001)

    Google Scholar 

  2. J. Singh, U.K. Mishra, Semiconductor Device Physics and Design (Springer, Berlin, 2008)

    Google Scholar 

  3. J. Lutz et al., Semiconductor Power Devices: Physics, Characteristics, Reliability (Springer, Berlin, 2018)

    Google Scholar 

  4. R. Quay, Gallium Nitride Electronics (Springer, Berlin, 2008)

    Google Scholar 

  5. A.S. Augustine Fletcher, D. Nirmal, A survey of gallium nitrate HEMT for RF and high-power applications. Superlattices Microstruct. 109, 519–537 (2017)

    Google Scholar 

  6. O. Ambacher et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222–3233 (1999)

    CAS  Google Scholar 

  7. J.W. Chung et al., Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs. IEEE Electron. Dev. Lett. 29(11), 1196–1198 (2008)

    CAS  Google Scholar 

  8. W. Saito et al., Recessed gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronic applications. IEEE Trans. Electron. Dev. 53(2), 356–362 (2006)

    CAS  Google Scholar 

  9. H.K. Lin, F.H. Huang, H.-L. Yu, DC and RF characterization of AlGaN/GaN HEMTs with different gate recess depths. Solid-State Electron. 54, 582–585 (2010)

    CAS  Google Scholar 

  10. Y. He et al., Enhancement-mode AlGaN/GaN nanowire channel high electron mobility transistor with fluorine plasma treatment by ICP. IEEE Electron. Dev. Lett. 38(10), 1421–1424 (2017)

    CAS  Google Scholar 

  11. A. Hwang et al., p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current. IEEE Electron. Dev. Lett. 34(2), 202–204 (2013)

    CAS  Google Scholar 

  12. R. Brown et al., A sub-critical barrier thickness normally-off AlGaN/GaN MOS-HEMT. IEEE Electron. Dev. Lett. 35(9), 906–908 (2014)

    CAS  Google Scholar 

  13. Y. Uemoto et al., Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron. Dev. 54(12), 3393–3399 (2007)

    CAS  Google Scholar 

  14. Z. Yatabe, J.T. Asubar, T. Hashizume, Insulated gate and surface passivation structures for GaN-based power transistors. J. Phys. D 49, 393001 (2016)

    Google Scholar 

  15. G. Dutta, N. DasGupta, A.D. Gupta, Low-temperature ICP-CVD SiNx as gate dielectric for GaN-based MIS-HEMTs. IEEE Trans. Electron. Dev. 63(12), 4693–4701 (2016)

    CAS  Google Scholar 

  16. Q. Hu et al., Channel engineering of normally-OFF AlGaN/GaN MOS-HEMTs by atomic layer etching and high-kappa dielectric. IEEE Electron. Dev. Lett. 39(9), 1377–1380 (2018)

    CAS  Google Scholar 

  17. P. Kordoš et al., Improved transport properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors. Appl. Phys. Lett. 90(12), 123513 (2007)

    Google Scholar 

  18. Y. Yue et al., AlGaN/GaN MOS-HEMT With HfO2 dielectric and Al2O3 Interfacial passivation layer grown by atomic layer deposition. IEEE Electron. Dev. Lett. 29(8), 838–840 (2008)

    CAS  Google Scholar 

  19. J.J. Freedsman, T. Kubo, T. Egawa, High drain current density E-mode Al2O3 AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit (4 × 108 V2 Ω−1 cm−2). IEEE Trans. Electron. Dev. 60(10), 3079–3083 (2013)

    CAS  Google Scholar 

  20. J.M. Lee et al., Characteristics of enhanced-mode AlGaN/GaN MIS HEMTs for millimeter wave applications. J. Korean Phys. Soc. 71(60), 365–369 (2017)

    CAS  Google Scholar 

  21. S. Sugiura et al., Fabrication of normally-off mode GaN and AlGaN/GaN MOSFETs with HfO2 gate insulator. Solid-State Electron. 54, 79–83 (2010)

    CAS  Google Scholar 

  22. Y.S. Lin et al., Improved AlGaN/GaN metal oxide-semiconductor high-electron mobility transistors with TiO2 gate dielectric annealed in nitrogen. IEEE Trans. Electron. Dev. 65(2), 783–787 (2018)

    CAS  Google Scholar 

  23. F. Roccaforte et al., Recent advances on dielectrics technology for SiC and GaN power devices. Appl. Surf. Sci. 301, 9–18 (2014)

    CAS  Google Scholar 

  24. M. Matys et al., Characterization of capture cross sections of interface states in dielectric/III-nitride heterojunction structures. J. Appl. Phys. 119(20), 205304 (2016)

    Google Scholar 

  25. B. Ray, S. Mahapatra, Modeling of channel potential and sub threshold slope of symmetric double-gate transistor. IEEE Trans. Electron. Dev. 56(2), 260–266 (2009)

    Google Scholar 

  26. A. Nandi, A.K. Saxena, S. Dasgupta, Design and analysis of analog performance of dual-k spacer underlap N/P-FinFET at 12 nm gate length. IEEE Trans. Electron. Dev. 60(5), 1529–1535 (2013)

    CAS  Google Scholar 

  27. A. Nandi, N. Pandey, S. Dasgupta, Analytical modeling of DG-MOSFET in subthreshold regime by green’s function approach. IEEE Trans. Electron. Dev. 64(8), 3056–3062 (2017)

    CAS  Google Scholar 

  28. B.G. Vasallo et al., Comparison between the dynamic performance of double- and single-gate AlInAs/InGaAs HEMTs. IEEE Trans. Electron. Dev. 54(11), 2815–2822 (2007)

    CAS  Google Scholar 

  29. K.S. Im et al., Characteristics of GaN and AlGaN/GaN FinFETs. Solid-State Electron.Elsevier 97, 66–75 (2014)

    CAS  Google Scholar 

  30. K.S. Im et al., Performance improvement of normally off AlGaN/GaN FinFETs with fully gate-covered nanochannel. Solid-State Electron. 89, 124–127 (2013)

    CAS  Google Scholar 

  31. A. Sarkar, R. Jana, The influence of gate underlap on analog and RF performance of III–V heterostructure double gate MOSFET. Superlattices Microstruct. 73, 256–267 (2014)

    CAS  Google Scholar 

  32. H. Pardeshi, Analog/RF performance of AlInN/GaN underlap DG MOSHEMT. Superlattices Microstruct. 88, 508–517 (2015)

    CAS  Google Scholar 

  33. H. Pardeshi et al., Performance assessment of gate material engineered AlInN/GaN underlap DG MOSFET for enhanced carrier transport efficiency. Superlattices Microstruct. 60, 10–22 (2013)

    CAS  Google Scholar 

  34. S. Adak, S. Swain, Impact of high-K dielectric materials on performance analysis of underlap In0.17Al0.83N/GaN DG-MOSHEMTs. Nano Brief Rep. Rev. 14(5), 1950060(1–9) (2019)

    Google Scholar 

  35. A.B. Khan et al., Effect of barrier layer thickness on AlGaN/GaN double gate MOS-HEMT device performance for high-frequency application. J. Nanoelectron. Optoelectron. 13, 20–26 (2018)

    CAS  Google Scholar 

  36. Sentarus Device User Guide. http://www.synopsys.com

  37. I. Nifa et al., Characterization of 2DEG in AlGaN/GaN heterostructure by Hall effect. Microelectron. Eng. 178, 128–131 (2017)

    CAS  Google Scholar 

  38. I. Nifa et al., Characterization and modeling of 2DEG mobility in AlGaN/AlN/GaN MIS-HEMT. Microelectron. Eng. 215, 110976–110981 (2019)

    Google Scholar 

  39. Y. Hori, Z. Yatabe, T. Hashizume, Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J. Appl. Phys. 114, 244503 (1–9) (2013)

    Google Scholar 

  40. X.-H. Ma et al., Quantitative characterization of interface traps in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by dynamic capacitance dispersion technique. Appl. Phys. Lett. 103(3), 033510 (2013)

    Google Scholar 

  41. T. Ytterdal, Y. Cheng, T. Fjeldly, Device Modelling for Analog and RF CMOS Circuit Design (Wiley, Hoboken, 2003)

    Google Scholar 

  42. A. Nandi, N. Pandey, S. Dasgupta, Analytical modeling of gate-stack DG-MOSFET in subthreshold regime by Green’s function approach. IEEE Trans. Electron. Dev. 65(10), 4724–4728 (2018)

    CAS  Google Scholar 

  43. M. Verma, A. Nandi, DC Analysis of GaN-capped AlGaN/GaN HEMT for different gate-drain spacing, in 2nd International Conference on Inventive Systems and Control (ICISC 2018) (IEEE, 2018), pp. 1337–1340

  44. J. Wei et al., Enhancement-mode GaN double-channel MOS-HEMT with low on-resistance and robust gate recess, in IEEE International Electron Devices Meeting (IEDM), Washington, DC (2015), pp. 9.4.1–9.4.4

  45. S. Gupta, A. Nandi, Effect of air spacer in underlap GAA nanowire: an analog/RF perspective. IET Circuits Dev. Syst. 13, 1196–1202 (2019)

    Google Scholar 

  46. S. Tayal, A. Nandi, Optimization of gate-stack in junctionless Si-nanotube FET for analog/RF applications. Mater. Sci. Semicond. Process. 80, 63–67 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Nandi, A. Design and Analysis of AlGaN/GaN Based DG MOSHEMT for High-Frequency Application. Trans. Electr. Electron. Mater. 21, 427–435 (2020). https://doi.org/10.1007/s42341-020-00196-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00196-x

Keywords

Navigation