Skip to main content
Log in

Investigation of Non-ideality Factors for a P3HT: PCBM Based Bulk Heterojunction Organic Solar Cell in Presence of Silver Nanoparticles

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Solar cells are a potential option to meet the growing energy requirements of humans. Organic solar cells (OSCs) represent a class of solar cells that is a part of the third generation solar cell technology. The quest for obtaining enhanced OSC efficiencies has led to the incorporation of metallic nanoparticles (NPs) in the OSCs. Metallic NPs increase the incident light absorption instances, thus increasing the obtainable cell efficiencies. Different parameters and factors need to be considered for obtaining the optimum NP specifications. Investigations of the mechanism of light absorption after the introduction of NPs in the OSC are critical. Hence theoretical simulations for such OSCs are important. An overview of the different solar cell characterization techniques is presented in this paper. Simulations are carried out for these characterization techniques to study the behavior of the P3HT:PCBM based OSC in which silver NPs are incorporated in the active layer. The simulations are carried out for the cell structure in the presence of different non-ideality factors. The non-idealities include mobility limitations, presence of traps, recombination losses, low generation, presence of non-ideal values of series and shunt resistances, the effect of doping, etc. The simulated characterization techniques can be utilized for the performance study and parameter extraction of these NP incorporated OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Maity, B. Das, R. Maity, N.P. Maity, K. Guha, K.S. Rao, Sol. Energy 185, 439 (2019)

    CAS  Google Scholar 

  2. S. Koul, N. Hakim, Trans. Electr. Electron. Mater. 19, 319 (2018)

    Google Scholar 

  3. W.J. Yoon, K.Y. Jung, J. Liu, T. Duraisamy, R. Revur, Solar energy mater. Solar Cells 94, 128 (2010)

    CAS  Google Scholar 

  4. A.J. Morfa, K.L. Rowlen, T.H. Reilly, M.J. Romero, J. van de Lagemaat, Appl. Phys. Lett. 9, 013504 (2008)

    Google Scholar 

  5. S. Liu, F. Meng, W. Xie, Z. Zhang, L. Shen, C. Liu, Y. He, W. Guo, Shengping Ruan, Appl. Phys. Lett. 103, 233303 (2013)

    Google Scholar 

  6. P.M. Aneesh, C.R. Kumar, P.C.R. Varma, K. Vivek, M.A.G. Namboothiry, Org. Photonics Photovolt. 3, 64 (2015)

    Google Scholar 

  7. E.S. Arinze, B. Qiu, G. Nyirjesy, S.M. Thon, ACS Photonics 3, 158 (2016)

    CAS  Google Scholar 

  8. S. Ahn, D. Rourke, W. Park, J. Opt. 18, 033001 (2016)

    Google Scholar 

  9. W.C. Choy, X. Ren, IEEE J. Sel. Top. Quantum Electron. 22, 4100209 (2016)

    Google Scholar 

  10. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    CAS  Google Scholar 

  11. L. Feng, M. Niu, Z. Wen, X. Hao, Polymers 10, 33 (2018)

    Google Scholar 

  12. C.H. Chou, F.C. Chen, Nanoscale 6, 8444 (2014)

    CAS  Google Scholar 

  13. C.C. Wang, W.C. Choy, C. Duan, D.D. Fung, E.I. Wei, F.X. Xie, F. Huang, Y. Cao, J. Mater. Chem. 22, 1206 (2012)

    CAS  Google Scholar 

  14. G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A.G. Kanaras, E. Lidorikis, E. Stratakis, E. Kymakis, Adv. Energy Mater. 6, 1501640 (2016)

    Google Scholar 

  15. J. Wang, S. Jia, Y. Cao, W. Wang, P. Yu, Nanoscale Res. Lett. 13, 211 (2018)

    Google Scholar 

  16. Q. Gan, F.J. Bartoli, Z.H. Kafafi, Adv. Mater. 25, 2385 (2013)

    CAS  Google Scholar 

  17. F. Otieno, N.P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R.M. Erasmus, A. Quandt, D. Wamwangi, AIP Adv. 7, 085302 (2017)

    Google Scholar 

  18. S. Nagamani, G. Kumarasamy, M. Song, C.S. Kim, D.-H. Kim, S.Y. Ryu, J.-W. Kang, S.-H. Jin, Synth. Met. 217, 117 (2016)

    CAS  Google Scholar 

  19. S.R. Gollu, S. Rao, R. Sharma, G. Srinivas, S. Kundu, D. Gupta, Org. Electron. 29, 79 (2016)

    CAS  Google Scholar 

  20. K. Yao, H. Jiao, Y.X. Xu, Q. He, F. Li, X. Wang, J. Mater. Chem. A4, 13400 (2016)

    Google Scholar 

  21. M. Chalh, S. Vedraine, B. Lucas, B. Ratier, Solar energy mater. Solar Cells 152, 34 (2016)

    CAS  Google Scholar 

  22. Y.F. Li, F.X. Dong, Y. Chen, X.L. Zhang, L. Wang, Y.G. Bi, Z.N. Tian, Y.F. Liu, J. Feng, H.B. Sun, Sci. rep 6, 37190 (2016)

    CAS  Google Scholar 

  23. D. Kozanoglu, D.H. Apaydin, A. Cirpan, E.N. Esenturk, Org. Electron. 14, 1720 (2013)

    CAS  Google Scholar 

  24. K. Yao, M. Salvador, C.C. Chueh, X.K. Xin, Y.X. Xu, D.W. Dequilettes, T. Hu, Y. Chen, D.S. Ginger, A.K.Y. Jen, Adv. Energy Mater. 4, 1400206 (2014)

    Google Scholar 

  25. M. Notarianni, K. Vernon, A. Chou, M. Aljada, J. Liu, N. Motta, Sol. Energy 106, 23 (2014)

    CAS  Google Scholar 

  26. M.A. Green, S. Pillai, Nat. Photonics 6, 130 (2012)

    CAS  Google Scholar 

  27. X. Li, W.C.H. Choy, H. Lu, W.E. Sha, A.H.P. Ho, Adv. Funct. Mater. 23, 2728 (2013)

    CAS  Google Scholar 

  28. E.L. Lim, C.C. Yap, M.A.M. Teridi, C.H. Teh, A.R. bin Mohd Yusoff, M.H.H. Jumali, Org Electron 36, 12 (2016)

    CAS  Google Scholar 

  29. D.T. Gangadharan, Z. Xu, Y. Liu, R. Izquierdo, D. Ma, Nanophotonics 6, 153 (2017)

    Google Scholar 

  30. G.D. Spyropoulos, M.M. Stylianakis, E. Stratakis, E. Kymakis, Appl. Phys. Lett. 100, 213904 (2012)

    Google Scholar 

  31. D.H. Wang, D.Y. Kim, K.W. Choi, J.H. Seo, S.H. Im, J.H. Park, A.J. Heeger, Angew. Chem. Int. Ed. 50, 5519 (2011)

    CAS  Google Scholar 

  32. L.W. Jang, H. Park, S.H. Lee, A.Y. Polyakov, R. Khan, J.K. Yang, I.H. Lee, Opt. Express 23, A211 (2015)

    CAS  Google Scholar 

  33. M. Wang, J. Li, X. Ma, J. Lv, C. Zhang, Y. Xia, Polym. Adv. Technol. 29, 914 (2018)

    CAS  Google Scholar 

  34. B. Ghosh, G.R. Espinoza, J. Mater. Sci. 1, 001 (2017)

    Google Scholar 

  35. Semiconducting thin film optics simulator (SETFOS) by Fluxim AG, Switzerland [Internet]. http://www.fluxim.com

  36. S. Kitova, D. Stoyanova, J. Dikova, M. Kandinska, A. Vasilev, S. Angelova, V. Mankov, Nanosci. Nanotechnol. 15, 19 (2015)

    CAS  Google Scholar 

  37. R. Häusermann, E. Knapp, M. Moos, N.A. Reinke, T. Flatz, B. Ruhstaller, J. Appl. Phys. 106, 104507 (2009)

    Google Scholar 

  38. M. Neukom, S. Züfle, S. Jenatsch, B. Ruhstaller, Sci. Technol. Adv. Mater. 19, 291 (2018)

    CAS  Google Scholar 

  39. G. Juška, K. Arlauskas, M. Viliūnas, J. Kočka, Phys. Rev. Lett. 84, 4946 (2000)

    Google Scholar 

  40. A.J. Mozer, N.S. Sariciftci, L. Lutsen, D. Vanderzande, R. Österbacka, M. Westerling, G. Juška, Appl. Phys. Lett. 86, 112104 (2005)

    Google Scholar 

  41. J. Lorrmann, B.H. Badada, O. Inganas, V. Dyakonov, C. Deibel, J. Appl. Phys. 108, 113705 (2010)

    Google Scholar 

  42. A. Baumann, J. Lorrmann, D. Rauh, C. Deibel, V. Dyakonov, Adv. Mater. 24, 4381 (2012)

    CAS  Google Scholar 

  43. S. Bange, M. Schubert, D. Neher, Phys. Rev. B. 81, 035209 (2010)

    Google Scholar 

  44. G. Dennler, A.J. Mozer, G. Juška, A. Pivrikas, R. Österbacka, A. Fuchsbauer, N.S. Sariciftci, Org. Electron. 7, 229 (2006)

    CAS  Google Scholar 

  45. J.I. Basham, T.N. Jackson, D.J. Gundlach, Energy Mater. 4, 1400499 (2014)

    Google Scholar 

  46. G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 9, 847 (2008)

    CAS  Google Scholar 

  47. E. Knapp, B. Ruhstaller, Opt. Quantum Electron. 42, 667 (2011)

    CAS  Google Scholar 

  48. E. Knapp, B. Ruhstaller, J. Appl. Phys. 112, 024519 (2012)

    Google Scholar 

  49. Z. Li, F. Gao, N.C. Greenham, C.R. McNeill, Adv. Funct. Mater. 21, 1419 (2011)

    CAS  Google Scholar 

  50. C.R. McNeill, I. Hwang, N.C. Greenham, J. Appl. Phys. 106, 024507 (2009)

    Google Scholar 

  51. I. Hwang, C.R. McNeill, N.C. Greenham, J. Appl. Phys. 106, 094506 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakshi Koul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koul, S., Hakim, Nud. Investigation of Non-ideality Factors for a P3HT: PCBM Based Bulk Heterojunction Organic Solar Cell in Presence of Silver Nanoparticles. Trans. Electr. Electron. Mater. 21, 293–304 (2020). https://doi.org/10.1007/s42341-020-00185-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00185-0

Keywords

Navigation