A Controlled Growth of ZnO Nanostructures on ZnS

  • Sung Il Ahn
Regular Paper


ZnO nanostructures were developed on a microsphere of ZnS:Cu,Cl phosphor (ZC) for a potential application to a new light source. The growth mechanisms of these nano-structures are very different from those of previously reported methods due to the difference in the zinc ion source of ZnO on the micro-sphere ZC. In this report, ZnO plays two different roles: provision of a seed site and a zinc ion source during the swelling and hydrothermal reaction. In building nanostructures, nano-wires appeared nano-wires first appeared and played a key role in the growth of seed sites of nano-flowers. Additionally, a significant luminance enhancement in the CL spectrum is observed from the emission of the flowers/ZC apparently caused by secondary excitation due to the emission from ZnO nanoflowers.


ZnO nanostructure Coreshell ZnO–ZnS Hydrothermal synthesis Phosphors Cathodoluminescence 



This research was financially supported by the Ministry of Education (MOE) and National Research Foundation of Korea (NRF) through Research Programs (Nos. 2016R1D1A1B03930387 and 2013M3C1A3065469).


  1. 1.
    S. Tarish, Y. Xu, Z. Wang, F. Mate, A. Al-Haddad, W. Wang, Y. Lei, Nanotechnology 28, 405501 (2017)CrossRefGoogle Scholar
  2. 2.
    E.M. Flores, C.W. Raubach, R. Gouvea, E. Longo, S. Cava, M.L. Moreira, Mater. Chem. Phys. 173, 347 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Tarish, A. Al-Haddad, R. Xu, D. Cao, Z. Wang, S. Qu, G. Nabi, Y. Lei, J. Mater. Chem. C 4, 1369 (2016)CrossRefGoogle Scholar
  4. 4.
    P. Kumbhakar, S. Biswas, C.S. Tiwary, P. Kumbhakar, J. Appl. Phys. 121, 144301 (2017)CrossRefGoogle Scholar
  5. 5.
    X. Chen, Z. Bai, X. Yan, H. Yuan, G. Zhang, P. Lin, Z. Zhang, Y. Liu, Y. Zhang, Nanoscale 6, 4691 (2014)CrossRefGoogle Scholar
  6. 6.
    G. Cao, H. Yang, K. Hong, W. Hu, M. Xu, Mater. Lett. 161, 278 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Wang, L. Cai, Y. Feng, L. Chen, W. Yan, Q. Liu, T. Yao, F. Hu, Z. Pan, Z. Sun, S. Wei, Appl. Phys. Lett. 104, 243112 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Guo, P. Diao, S. Cai, J. Solid State Chem. 178, 1864 (2005)CrossRefGoogle Scholar
  9. 9.
    J. Yan, X. Fang, L. Zhang, Y. Bando, U.K. Gautam, B. Dierre, T. Sekiguchi, D. Golberg, Nano Lett. 8, 2794 (2008)CrossRefGoogle Scholar
  10. 10.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2016)CrossRefGoogle Scholar
  11. 11.
    S.I. Ahn, S.E. Lee, W.H. Lee, S.H. Park, K.C. Choi, Chem. Phys. Lett. 493, 113 (2010)CrossRefGoogle Scholar
  12. 12.
    J.S. Steckel, J.P. Zimmer, S. Coe-Sullivan, N.E. Stott, V. Bulović, M.G. Bawendi, Angew. Chemie Int. Ed. 43, 2154 (2004)CrossRefGoogle Scholar
  13. 13.
    G. Li, Y. Jiang, Y. Zhang, X. Lan, T. Zhai, G.-C. Yi, J. Mater. Chem. C 2, 8252 (2014)Google Scholar
  14. 14.
    C. Liu, Z. Liu, J. Li, Y. Li, J. Han, Y. Wang, Z. Liu, J. Ya, Microelectron. Eng. 103, 12 (2016)CrossRefGoogle Scholar
  15. 15.
    S.I. Ahn, S.E. Lee, Y.-H. Cho, G.R. Kim, S.-M. Li, K.C. Choi, W.H. Lee, Appl. Phys. Lett. 95, 022108 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Guo, Y.L. Ji, H. Xu, P. Simon, Z. Wu, J. Am. Chem. Soc. 124, 14864 (2002)CrossRefGoogle Scholar
  17. 17.
    L. Vayssieres, Adv. Mater. 15, 464 (2003)CrossRefGoogle Scholar
  18. 18.
    R.B. Peterson, C.L. Fields, B.A. Gregg, Langmuir 20, 5114 (2004)CrossRefGoogle Scholar
  19. 19.
    R.A. Laudise, A.A. Ballman, J. Phys. Chem. 64, 688 (1960)CrossRefGoogle Scholar
  20. 20.
    Y.-H. Cho, J.-Y. Kim, H.-S. Kwack, B.-J. Kwon, L.S. Dang, H.-J. Ko, T. Yao, Appl. Phys. Lett. 89, 201903 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Li, D. Zhao, X. Meng, Z. Zhang, J. Zhang, D. Shen, Y. Lu, X. Fan, J. Phys. Chem. B 110, 14685 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Division of Energy and Chemical EngineeringSilla UniversityBusanKorea

Personalised recommendations