Skip to main content
Log in

Emergence of Uncertainties and Mathematical Problems Through Collective Investigation on Routine Tasks

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This article aims to illustrate how the collective resolution of routine mathematical tasks can give rise to uncertainties, fostering and supporting a rich and authentic mathematical activity. While solving routine tasks may not typically be classified as problem-solving, the research presented in this paper shows that, at the collective level, their resolution can give rise to new mathematical tasks to solve in the classroom and generate authentic problem-solving activity. Grounded in the enaction theory of cognition (e.g. Maturana & Varela in Shambhala, 1992), this research considers the class as a unit, as a collectivity, which brings forth a mathematical activity. In this article, examples derived from an experiment conducted in elementary-level mathematics classrooms are used to show the emergence of uncertainties, highlighting the mathematical potential resulting from the collective resolution of routine tasks. In conclusion, the article introduces the concept of collective mathematical problems.

Résumé

Cet article vise à illustrer le potentiel d’une exploitation collective de tâches routinières à faire émerger des incertitudes qui favorisent une activité mathématique riche et authentique en classe. Alors que la résolution de tâches routinières peine à se qualifier de résolution de problèmes, la recherche présentée dans cet article montre qu’au niveau collectif leur résolution peut donner lieu à de nouvelles tâches mathématiques à résoudre et générer une authentique activité de résolution de problèmes en classe. Prenant appui sur la théorie cognitive de l’enaction (e.g. Maturana et Varela dans Shambhala, 1992) cette recherche considère la classe comme une unité collective, soit une collectivité, qui, ensemble, fait émerger une activité mathématique. Dans cet article, des exemples tirés d’une expérimentation en classe du primaire sont utilisés pour montrer l’émergence d’incertitudes, illustrant le potentiel mathématique résultant d’une résolution collective de tâches routinières. En conclusion, l’article introduit la notion de problèmes mathématiques collectifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data (transcripts only) that support the findings of this study are available on request from the corresponding author [genevieve.barabe@umontreal.ca].

Notes

  1. Some make a distinction between a ‘task’ and a ‘problem’ in mathematics (see e.g. Hoshino et al., 2016). A task refers to a mathematical statement whereas a problem refers to what is solved, i.e. what is done for and during solving. This distinction is retained in this paper and will be discussed in more detail subsequently.

References

  • Agre, G. P. (1982). The concept of problem. Educational Studies, 13(2), 121-142.

    Article  Google Scholar 

  • Arsac, G., Germain, G., Mante, M. (1988). Problème ouvert et situation-problème. IREM de Lyon.

  • Bauersfeld, H. (1995). The structuring of the structures: development and function of mathematizing as a social practice. In Steffe, L. & Gale, J. (Eds). Constructivism in education (p. 137-158). Routledge.

    Google Scholar 

  • Beghetto, R. A. (2017). Lesson unplanning: toward transforming routine tasks into non-routine problems. ZDM Mathematics Education, 49, 987-993. https://doi.org/10.1007/s11858-017-0885-1

    Article  Google Scholar 

  • Beghetto, R.A. (2020) Uncertainty. In : V. Glăveanu (ed.) The Palgrave Encyclopedia of the Possible. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-98390-5_122-1

  • Borasi, R. (1996). Reconceiving Mathematics Instruction: A focus on Errors. Norwood, NJ: Ablex Publishing.

    Google Scholar 

  • Cobb, P., Wood, T., Yackel, E., McNeal, B. (1992). Characteristics of classroom mathematics traditions: an interactional analysis. American Educational Research Journal, 29(3), 573-604.

    Article  Google Scholar 

  • Douady, R. (1994). Ingénierie didactique et évolution du rapport au savoir. Reperes-IREM, 15, 37-61.

    Google Scholar 

  • English, L., Gainsburg, J. (2015). Problem solving in a 21st century mathematics curriculum. In : L. English et D. Kirshner (eds.), Handbook of international research in mathematics education (p. 313–335). Routledge.

  • Gavaz, H. O., Yazgan, Y. et Arslan, Ç. (2021). Non-routine problem solving strategy flexibility : A quasi-experimental study. Journal of Pedagogical Research, 5(3), 40–54. https://doi.org/10.33902/JPR.2021370581

  • Halmos, P. R. (1980). The art of mathematics. The American Mathematical Monthly, 87(7), 519-524.

    Article  Google Scholar 

  • Hoshino, R., Polotskaia, E., Reid, D. (2016). Problem solving: definitions, role and pedagogy. In : S. Oesterle, D. Allan et J. Holms (eds.), (p. 151–162). Proceedings of CMESG/CGEDM. Kingston : Ontario.

  • Kieren, T. (1995). Mathematics Teaching (In-the-middle): Enactivist view on learning and teaching mathematics. Proceedings of Canadian National Mathematics Leadership conference. Kingston, Ontario.

  • Lampert, M. (2001). Teaching problems and the problems of teaching. Yale University Press.

    Google Scholar 

  • Lampert, M. (1990). When the problem is not the question and the solution is not the answer: mathematical knowing and teaching. American Educational Research Journal, 27(1), 29-63.

    Article  Google Scholar 

  • Liljedahl, P. (2020). Building thinking classrooms in mathematics. Corwin Press Inc.

  • Liljedahl, P., Cai, J. (2021). Empirical research on problem solving and problem posing: a look of the state of the art. ZDM-Mathematics Education, 53, 723-735. https://doi.org/10.1007/s11858-021-01291-w

    Article  Google Scholar 

  • Martin, L., Towers, J., Pirie, S. (2006). Collective mathematical understanding as improvisation. Mathematical Thinking and Learning, 8(2), 149-183.

    Article  Google Scholar 

  • Mason, J. (2019). Evolution of a task domain. Digital Experience in Mathematics Education, 5, 145-165. https://doi.org/10.1007/s40751-018-0046-3

    Article  Google Scholar 

  • Maturana, H., Varela, F. J. (1992). The tree of knowledge. Shambhala.

  • Ministère de l’Éducation du Québec. (2019). Référentiel d’intervention en mathématique. Gouvernement du Québec.

  • Ministry of Education of Ontario. (2006). Guide de l’enseignement efficace des mathématiques, fascicule 2. Government of Ontario.

  • Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New-York. Basic Books.

    Google Scholar 

  • Papert, S. (2000). What’s the big idea? Toward a pedagogy of idea power. IBM System Journal, 39 (3-4), 720-729.

    Article  Google Scholar 

  • Polya, G. (1945). How to solve it. Doubleday.

    Book  Google Scholar 

  • Proulx, J. (2018). On teaching actions in mathematical problem-solving contexts. In Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.), Proceedings of the 40th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (p.1060-1067). Greenville, SC: University of South Carolina & Clemson University.

  • Proulx, J. (2022). Réflexions méthodologiques, épistémologiques et éthiques sur les données de recherche recueillies en salle de classe: l’expérience vécue par le chercheur. Revue des sciences de l’éducation, 48(1), 1-13. https://doi.org/10.7202/1096361ar

    Article  Google Scholar 

  • Proulx. J., Maheux, J.-F. (2017). From problem solving to problem posing and from strategies to laying down a path in solving: Taking Varela’s ideas to mathematics education research. Constructivist Foundation, 13(1), 160-190.

    Google Scholar 

  • Simmt, E. (2000). Mathematics knowing in action: A fully embodied interpretation. Ph.D. dissertation. Edmonton: University of Alberta.

  • Small (2022, February 22nd). It’s not the task it’s the follow-up. https://www.onetwoinfinity.ca/its-not-the-task-its-the-follow-up/

  • Towers, J., Martin, L. (2015). Enactivism and the study of collectivity. ZDM-Mathematics Education, 47, 247-256. DOI https://doi.org/10.1007/s11858-014-0643-6

    Article  Google Scholar 

  • Varela, F. J. (1996). Invitation aux sciences cognitives. Éditions du Seuil.

Download references

Funding

This research was funded by the Fonds de Recherche du Québec Société et Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Barabé.

Ethics declarations

Ethical Approval

This study was approved by and conducted in accordance with the ethical standard of the Université du Québec à Montréal.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabé, G. Emergence of Uncertainties and Mathematical Problems Through Collective Investigation on Routine Tasks. Can. J. Sci. Math. Techn. Educ. (2024). https://doi.org/10.1007/s42330-024-00308-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42330-024-00308-2

Keywords

Navigation