Skip to main content
Log in

Learning to Struggle: Supporting Middle-grade Teachers’ Understanding of Productive Struggle in STEM Teaching and Learning

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This qualitative study examines the influence of a 3-year professional development project for middle school mathematics, science, and special education teachers focused on integrating science, mathematics, and engineering in classroom instruction on participants’ understandings of productive struggle in learning. Multi-disciplinary teams of teachers engaged as learners to use engineering design as a framework for integrating significant mathematics and science content supported by effective teaching practices. In this paper, we describe how the components of our professional development design supported teacher-participants to make sense of productive struggle in learning. In particular, participants noted that being able to experience design-based activities as learners and working through solutions with their colleagues supported their understanding of what it means to productively struggle, resulting in their growth as individuals and as teachers. The significance in this work lies in understanding how to effectively support teachers to buy-in to the meaning and value of productive struggle and how engaging in integrated science, technology, engineering, and mathematics (STEM), design-based professional learning experiences facilitated that effort.

Résumé

Cette étude qualitative se penche sur l’influence qu’a eue un projet de formation professionnelle d’une durée de trois ans, destiné aux enseignants de mathématiques, de sciences et d’éducation spécialisée de l’école intermédiaire et axé sur l’intégration des sciences, des mathématiques et de l’ingénierie dans l’enseignement en classe, sur la compréhension qu’ont les participants de la « difficulté productive» dans l’apprentissage. Des équipes multidisciplinaires d’enseignants, appuyées par des pratiques d’enseignement efficaces se sont engagées, en tant qu’apprenants, à utiliser la conception technique comme cadre d’intégration de contenus mathématiques et scientifiques importants. Dans cet article, nous décrivons comment les éléments formant notre concept de formation professionnelle ont aidé les enseignants participants à donner un sens à la « difficulté productive» dans le processus d’apprentissage. En particulier, les participants ont remarqué que le fait de pouvoir expérimenter des activités fondées sur la conception en tant qu’apprenants et de travailler à trouver des solutions avec leurs collègues les a aidés à comprendre ce que signifie la « difficulté productive», ce qui a contribué à leur croissance en tant qu’individus et en tant qu’enseignants. Ce qui ressort de ce travail, c’est l’importance de comprendre comment aider efficacement les enseignants à adhérer au sens donné à la « difficulté productive» ainsi qu’à son bien-fondé, et comment l’engagement dans des expériences d’apprentissage professionnel intégrées et fondées sur la conception en sciences, en technologie, en ingénierie et en mathématiques (STIM) a facilité cet effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Curtis et al. (2023). Reprinted with permission from Teachers College Press via fair use guidelines. Created with Microsoft Word

Similar content being viewed by others

References

  • Baker, K., Jessup, N. A., Jacobs, V. R., Empson, S. B., & Case, J. (2020). Productive struggle inaction. Mathematics Teacher: Learning & Teaching PK-12, 113(5), 361-374

    Article  Google Scholar 

  • Barkatsas, A. T., & Malone, J. (2005). A typology of mathematics teachers’ beliefs about teaching and learning mathematics and instructional practices. Mathematics Education Research Journal, 17, 69–90.

    Article  Google Scholar 

  • Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15. https://doi.org/10.3102/0013189X03300800.

    Article  Google Scholar 

  • Brown, R. E., Bogiages, C. A. (2019). Professional development through STEM integration: How early career math and science teachers respond to experiencing integrated STEM tasks. International Journal of Science and Mathematics Education, 17, 111-128. https://doi.org/10.1007/s10763-017-9863-x

    Article  Google Scholar 

  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situation cognition and the culture of learning. Educational Researcher, 18(1), 32-42.

    Article  Google Scholar 

  • Brown, T. & Wyatt, J. (2010). Design thinking for social innovation. Stanford Social Innovation Review, 8(1), 30-35.

    Google Scholar 

  • Bush, S. B., Karp, K. S., Cox, R., Cook, K. L., Albanese, J., & Karp, M. (2018). Design thinking framework: shaping powerful mathematics. Mathematics Teaching in the Middle School, e1-e5.

  • Cirillo, M., Pelesko, J. A., Felto-Kestler, M. D., & Rubel, L. (2016). Perspectives on modeling in school mathematics, pp. In C. R. Hirsch, & A. R. McDuffie, (Eds.) Annual perspectives in mathematics education: Mathematical modeling and modeling mathematics (3-16). National Council of Teachers of Mathematics.

    Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glasser (pp. 453-494). Routledge.

    Google Scholar 

  • Collins, A., & Kapur, M. (2014). Cognitive apprenticeship. In R. Sawyer (Ed.), The Cambridge handbook of the learning sciences (Cambridge Handbooks in Psychology, pp. 109–127). Cambridge University Press. https://doi.org/10.1017/CBO9781139519526.008

  • Cooper, R., Fitzgerald, A., & Carpendale, J. (2022). A reading group for science educators: An approach for developing collective pedagogical content knowledge in science education. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-022-10260-y

    Article  Google Scholar 

  • Curtis, R., Cairns, D. R., & Bolyard, J. (2023). Design thinking in the middle grades: Transforming mathematics and science learning. NY: Teachers College.

    Google Scholar 

  • Czerniak, C. (2007). Interdisciplinary science teaching. In S. Abell & N. Lederman (Eds.), Handbook of research on science education, 537–559. New York: Routledge.

    Google Scholar 

  • Drake, C. (2006). Turning points: Using teachers’ mathematics life stories to understand the implementation of mathematics education reform. Journal of Mathematics Teacher Education, 9(6), 579–608.

    Article  Google Scholar 

  • Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120. https://doi.org/10.1002/j.2168-9830.2005.tb00832

    Article  Google Scholar 

  • Engle, R. A. (2006). Framing interactions to foster generative: A situation explanation of transfer in a community of learners classroom. Journal of the Learning Sciences, 15(4), 451–498.

    Article  Google Scholar 

  • Fennema, E., Peterson, P. L., Carpenter, T. P., & Lubinski, C. A. (1990). Teachers’ attributions and beliefs about girls, boys, and mathematics. Educational Studies in Mathematics, 21(1), 55–69.

    Article  Google Scholar 

  • Forzani, F. M. (2014). Understanding “core practices” and “practice-based” teacher education: Learning from the past. Journal of Teacher Education, 65, 357–368.

    Article  Google Scholar 

  • Franke, M. L., Turrou, A. C., Webb, N. M., Ing, M., Wong, J., Shin, N., & Fernandez, C. (2015). Student engagement with others’ mathematical ideas: The role of teacher invitation and support moves. Elementary School Journal, 116(1), 126–148.

    Article  Google Scholar 

  • Goldsmith, L. T., Doerr, H. M., & Lewis, C. C. (2014). Mathematics teachers’ learning: A conceptual framework and synthesis of research. Journal of Mathematics Teacher Education, 17, 5-36. https://doi.org/10.1007/s10857-013-9245-4

    Article  Google Scholar 

  • Gresfali, M., Martin, T., Hand, V., & Greeno, J. (2009). Constructing competence: An analysis of student participation in the activity systems of mathematics classrooms. Educational Studies in Mathematics, 70(1), 49–70.

    Article  Google Scholar 

  • Hafiz, R. M., & Ayop, S. K. (2019). Engineering design process in STEM education: A systematics review. International Journal of Academic Research in Business & Social Sciences, 9(5), 676-679.

    Google Scholar 

  • Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Greenwich, CT: Information Age Publishing.

    Google Scholar 

  • Huinker, D., & Bill, V. (2017). Taking action: Implementing effective mathematics teaching practices, K-grade 5. Reston, VA: NCTM.

    Google Scholar 

  • Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379–424.

    Article  Google Scholar 

  • Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional Science, 38(6), 523–550.

    Article  Google Scholar 

  • Kapur, M. (2011). A further study of productive failure in mathematical problem solving: Unpacking the design components. Instructional Science, 39(4), 561–579.

    Article  Google Scholar 

  • Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21(1), 45–83.

    Article  Google Scholar 

  • Kelley, D. & Kelley, T. (2013) Creative confidence: Unleashing the creative potential within us all. New York, NY: Crown Business.

    Google Scholar 

  • Lieberman, A., & Mace, D. H. P. (2008). Teacher learning: The key to educational reform. Journal of Teacher Education, 59(3), 226-234. https://doi.org/10.1177/0022487108317020

    Article  Google Scholar 

  • Lotan, R. (2003). Group-worthy tasks. Educational Leadership, 60(6), 72-75.

    Google Scholar 

  • Louie, N. L. (2017). The culture of exclusion in mathematics education and its persistence in equity-oriented teaching. Journal for Research in Mathematics Education, 48(5), 488-519.

    Article  Google Scholar 

  • McDonald, M., Kazemi, E., & Kavanaugh, S. S. (2013). Core practices and pedagogies of teacher education: A call for a common language and collective activity. Journal of Teacher Education, 64, 378–386.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics (NCTM). (2014). Principles to actions: Ensuring mathematical success for all. National Council of Teachers of Mathematics.

    Google Scholar 

  • NGA & CCSSO, N. G. A. C. for B. P. and C. of C. S. S. O. (2010). Common core standards for mathematics. Retrieved from http://www.corestandards.org

  • NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. National Academies Press. Retrieved from https://www.nextgenscience.org/

  • Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. Review of Educational Research, 81(3), 376-407. https://doi.org/10.3102/0034654311413609

    Article  Google Scholar 

  • Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice (4th ed.). Sage.

    Google Scholar 

  • Piaget, J. (1960). The general problems of the psycho-biological development of the child. In Discussions on child development (Vol. 4, pp. 3–27). London: Tavistock.

  • Rojas, L., & Liou, D. D. (2017). Social justice teaching through the sympathetic touch of caring and high expectations for students of color. Journal of Teacher Education, 68(1), 28–40. https://doi.org/10.1177/0022487116676314

    Article  Google Scholar 

  • Saldaña, J. (2013). The coding manual for qualitative researchers (2nd ed.). Thousand Oaks, CA: Sage Publications, Inc.

    Google Scholar 

  • Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22, 129–184.

    Article  Google Scholar 

  • Skemp, R. R. (1971). The psychology of learning mathematics. Harmondsworth, UK: Penguin.

    Google Scholar 

  • Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A. (2009). Implementing standards-based mathematics instruction: A casebook for professional development (2nd ed.). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Stigler, J. W., & Hiebert, J. (2004). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: Free Press.

    Google Scholar 

  • Tools for ambitious science teaching. (n.d.). Retrieved from http://ambitiousscienceteaching.org/us/

  • Townsend, C., Slavit, D., & McDuffie, A. R. (2018). Supporting all learners in productive struggle. Mathematics Teaching in the Middle School, 216–224. https://doi.org/10.5951/mathteacmiddscho.23.4.00e1

  • Valentine, K., & Bolyard, J. (2018, April 13-17). Creating a Classroom Culture that Supports Productive Struggle: Pre-service Teachers’ Reflections on Teaching Mathematics [Paper presentation]. American Educational Research Association, New York, NY, United States.

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Warshauer, H. K. (2015). Productive struggle in middle school mathematics classrooms. Journal of Mathematics Teacher Education, 18(4), 375–400.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the West Virginia Department of Education and the Regional Education Support Agency (RESA) 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnna Bolyard.

Ethics declarations

Ethics Approval and Consent to Participate

The datasets generated and analyzed during the current study are not publicly available due to protection or privacy of the participants.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolyard, J., Curtis, R. & Cairns, D. Learning to Struggle: Supporting Middle-grade Teachers’ Understanding of Productive Struggle in STEM Teaching and Learning. Can. J. Sci. Math. Techn. Educ. 23, 687–702 (2023). https://doi.org/10.1007/s42330-023-00302-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-023-00302-0

Keywords

Navigation