Skip to main content
Log in

Promoting Computational Thinking, Computational Participation, and Spatial Reasoning with LEGO Robotics

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This paper examines the context for developing computational thinking (CT), computational participation (CP), and spatial reasoning among predominantly Black elementary students in grades 5 and 6, who attended a public school in the urban fringe of a large city in the Eastern United States. A case study is presented as the method to examine two African-American female teachers’ use of culturally relevant pedagogy to enhance these students’ learning and engagement in a 10-week informal after-school program where LEGO® robotics tasks were implemented. The processes of coding, constant comparison, and convenience sampling were used to analyze data using qualitative methods. Results revealed evidence of CT among nine focal students. CP was not observed at the baseline but was evident at the endpoint. Moreover, six of the nine focal students demonstrated a variety of spatial reasoning skills during LEGO® robotics tasks, which are correlated with higher mathematics achievement and academic success. Further analysis revealed that these focal students persisted in problem solving during the LEGO® robotics program. Focus group interviews with the two teachers and eight randomly selected students support these outcomes.

Résumé

Cet article examine le contexte qui favorise le développement de la pensée computationnelle (PC), de la participation computationnelle et du raisonnement spatial chez des élèves de cinquième et sixième année du primaire, majoritairement noirs, qui fréquentent une école publique située en périphérie urbaine d’une grande ville de l’est des États-Unis. On présente une étude de cas comme méthode pour examiner l’utilisation de la pédagogie culturelle par deux enseignantes afro-américaines dans le but d’améliorer l’apprentissage et l’engagement de ces élèves dans le cadre d’un programme informel de dix semaines qui se déroule après l’école et dans lequel des tâches de robotique LEGOMD sont employées. Les processus de codage, de comparaison continue et d’échantillonnage de commodité ont été utilisés pour analyser les données à l’aide de méthodes qualitatives. Les résultats montrent que neuf élèves ciblés ont fait preuve de PC. Celle-ci n’a pas été observée dans les conditions de départ, mais elle était évidente au résultat final. De plus, six des neuf élèves ciblés ont démontré une variété de compétences de raisonnement spatial dans les tâches de robotique LEGOMD, qui sont corrélées avec des résultats plus élevés en mathématiques et la réussite scolaire. Une analyse plus approfondie a révélé que ces élèves ciblés ont continué à résoudre des problèmes pendant le programme de robotique LEGOMD. Les entrevues de groupe menées avec les deux enseignantes et huit élèves choisis au hasard confirment ces résultats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aikenhead, G. S. (2017). Enhancing school mathematics culturally: A path of reconciliation. Canadian Journal of Science, Mathematics, and Technology Education, 17(2), 73-140. https://doi.org/10.1080/14926156.2017.1308043

    Article  Google Scholar 

  • Barton, A., & Tan, E. (2018). STEM-Rich maker learning. Teachers College Press.

  • Blanchard, S., Judy, J., Muller, C., Crawford, R. H., & Petrosino, A. J. (2015). Beyond Blackboards: Engaging underserved middle school students in engineering. Journal of Pre-College Engineering Education Research, 5(1), 1-14.

    Google Scholar 

  • Bishop, A. J. (1988). Mathematics education in its cultural context. Educational Studies in Mathematics, 19(2), 179-191.  https://doi.org/10.1007/978-94-017-2209-4_4

    Article  Google Scholar 

  • Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada (Vol. 1, p. 25).

  • Bruce, C. D., Davis, B., Sinclair, N., McGarvey, L., Hallowell, D., Drefs, M., Francis, K., Hawes, J., Moss, J., Mulligan, J., Okamoto, Y., Whiteley, W., & Woolcott, G. (2017). Understanding gaps in research networks: using “spatial reasoning” as a window into the importance of networked educational research. Educational Studies in Mathematics, 95(2), 143–161.

    Article  Google Scholar 

  • Casey, B. M., Dearing, E., Vasilyeva, M., Ganley, C. M., & Tine, M. (2011). Spatial and Numerical Predictors of Measurement Performance: The Moderating Effects of Community Income and Gender. Journal of Educational Psychology, 103(2), 296–311.

    Article  Google Scholar 

  • Charmaz, K. (2010). Grounded theory: Objectivist and constructivist methods. In W. Luttrell (Ed.), Qualitative educational research: Readings in reflexive methodology and transformative practice (pp. 183-207). Routledge.

    Google Scholar 

  • Chen, G., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programs. Computers & Education, 109, 162-175.  https://doi.org/10.1016/j.compedu.2017.03.001

    Article  Google Scholar 

  • Davis, B., Okamoto, Y., & Whiteley, W. (2015). In B. Davis and Spatial Reasoning Group (Eds.), Spatializing school mathematics. In Spatial Reasoning in the Early Years: Principles, Assertions, and Speculations (pp. 139–150). Routledge.

  • Edelen, D., Bush, S. B., & Nickels, M. (2019). Transcending boundaries: Elevating toward empathy in STEM with a robotics inquiry. Science and Children, 57(1), 44-50.

    Google Scholar 

  • Erickson, F. (1987). Transformation and school success: The politics and culture of educational achievement. Anthropology & Education Quarterly, 18(4), 335-356. https://doi.org/10.1525/aeq.1987.18.4.04x0023w

    Article  Google Scholar 

  • Francis, K., Khan, S., & David, B. (2016). Enactivism, spatial reasoning and coding. Digital Experiences in Mathematics Education, 29(1), 1-20.  https://doi.org/10.1077/340751-015-0010-4

    Article  Google Scholar 

  • Glaser, B. G. (Ed.). (1965). The constant comparative method of qualitative analysis. Social Problems, 12(4), 436–445. http://www.jstor.org/stable/798843

  • Greatschools.org (2023). School ratings and reviews for public and private schools. https://www.greatschools.org

  • Gutstein, E. (2006). Reading and writing the world with mathematics: Toward a pedagogy for social justice. Routledge.

  • Gutstein, E. (2009). The politics of mathematics education in the United States: Dominant and counter agendas. In B. Greer, S. Mukhopadhyay, A. B. Powell, & S, Nelson-Barber (Eds.), Culturally responsive mathematics education (pp. 137–164). Routledge.

  • International Society for Technology in Education [ISTE]. (2011). ISTE Standards. https://www.iste.org

  • Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming. The MIT Press.

  • Kafai, Y. B., & Burke, Q. (2017). Computational participation: Teaching kids to create and connect through code. In P. J. Rich & C. B. Hodges (Eds.), Emerging research, practice, and policy on computational thinking (pp. 393-405). Springer.

    Chapter  Google Scholar 

  • Karp, T., & Maloney, P. (2013). Exciting young students in grades K-8 about STEM through an afterschool robotics challenge. American Journal of Engineering Education, 4(1), 39–54.  https://doi.org/10.19030/ajee.v4i1.7857

    Article  Google Scholar 

  • Kulak, A. G. (1993). Spatial processing and arithmetic performance. Carleton University (Canada). ProQuest Dissertations and Theses.

  • Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. American Educational Research Journal, 32(3), 465-491.

    Article  Google Scholar 

  • Ladson-Billings, G. (2009). The dreamkeepers: Successful teachers of African American children (2nd ed.). Jossey-Bass.

  • Leonard, J. (2019). Culturally specific pedagogy in the mathematics classroom: Strategies for teachers and students (2nd ed.). Routledge.

  • Leonard, J., Brooks, W., Barnes-Johnson, J., & Berry, R. Q., III. (2010). The nuances and complexities of teaching mathematics for cultural relevance and social justice. Journal of Teacher Education, 61(3), 261-270.  https://doi.org/10.1177/0022487109359927

    Article  Google Scholar 

  • Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O. S., Hubert, T., & Almughyirah, S. (2016). Using robotics and game design to enhance children’s STEM attitudes and computational thinking skills. Journal of Science Education and Technology, 28(6), 860-876.  https://doi.org/10.1077/s10956-016-9628-2

    Article  Google Scholar 

  • Leonard, J., & Martin, D. B. (Eds.) (2013). The brilliance of Black children in mathematics: Beyond the numbers and toward new discourse. Information Age Publishing.

  • Leonard, J., Mitchell, M., Barnes-Johnson, J., Unertl, A., Outka-Hill, J., Robinson, R. & Hester-Croff, C. (2018). Preparing teachers to engage rural students in computational thinking through robotics, game design, and culturally responsive teaching. Journal of Teacher Education, 69(4), 386-407.  https://doi.org/10.1077/0022487117732317.

    Article  Google Scholar 

  • Leonard, J., Thomas, J. O., Ellington, R., Mitchell, M. B., & Fashola, O. S. (2022). Fostering computational thinking among underrepresented students in STEM: Strategies for supporting racially equitable computing. Routledge.

  • Linn, M. C., & Peterson, A. C. (1985). Emergence and characterization of gender differences in spatial abilities: A meta-analysis. Child Development, 56, 1479–1498.

    Article  Google Scholar 

  • Lodi, M., & Martini, D. (2021). Computational thinking, between Papert and Wing. Science Education, 30, 883-908. https://doi.org/10.1007/s11191-021-00202-5

    Article  Google Scholar 

  • Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344–351.  https://doi.org/10.1016/j.paid.2010.03.022

    Article  Google Scholar 

  • Meacham, S., & Atwood-Blaine, D. (2018). Early childhood robotics: A Lego robotics club inspired by Reggio Emilia supports children’s authentic learning. Science and Children, 56(3), 57-63.

    Article  Google Scholar 

  • Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20, 101–109.

    Article  Google Scholar 

  • Miles, M. B., Huberman, A. M., & Saldana, J. (2018). Qualitative data analysis: A methods sourcebook (4th ed.). Sage.

  • Mitchell, A. (1998). African American teachers: Unique roles and universal lessons. Education and Urban Society, 31, 104-122.

    Article  Google Scholar 

  • Mix, K. S., & Cheng, Y.-L. (2012). The relation between space and math: developmental and educational implications. Advances in Child Development and Behavior, 42, 197–243. http://www.ncbi.nlm.nih.gov/pubmed/22675907

  • Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: the latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206–1227. https://doi.org/10.1037/xge0000182

    Article  Google Scholar 

  • Moses, R., West, M. M., & Davis, F. E. (2009). Culturally responsive mathematics education in the Algebra Project. In B. Greer, S. Mukhopadhyay, A. B. Powell, & S. Nelson-Barber (Eds.), Culturally responsive mathematics education (pp. 239–256). Routledge.

  • Nagy-Kondor, R. (2017). Spatial ability: Measurement and development. In M. S. Khine (Ed.), Visual-spatial ability in STEM education (pp. 35-58). Springer.

    Chapter  Google Scholar 

  • Nasir, N. S. (2005). Individual cognitive structuring and the sociocultural context: Strategy shifts in the game of dominoes. The Journal of the Learning Sciences, 14(1), 5-34.

    Article  Google Scholar 

  • Newton, K. Leonard, J., Buss, A., Wright, C., & Barnes-Johnson, J. (2020). Learning with robotics and game design in an urban context. Journal of Research in Technology Education, 52(2), 129-147.  https://doi.org/10.1080/15391523.2020.1713263

    Article  Google Scholar 

  • Nieto, S. (2002). Language, culture, and teaching: Critical perspectives for a new century. Lawrence Erlbaum Associates.

  • Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of robotics and geospatial technology interventions on youth STEM learning and attitudes. Journal of Research on Technology in Education, 42(4), 391–408. https://doi.org/10.1080/15391523.2010.10782557

    Article  Google Scholar 

  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

    Google Scholar 

  • Papert, S., & Harel I. (1991). Situated constructionism. In I. Harel & S. Papert (Eds.), Constructionism. Ablex.

  • Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., Her Many Horses, I., Basawapatna, A., Gluck, F., Grover, R., Gutierrez, K., & Repenning, N. (2015). Scalable game design: A strategy to bring systematic computer science education to schools through game design and simulation creation. ACM Transactions of Computer Education, 15(2), 11.1–11.31.

  • Ryoo, J. J. (2019). Pedagogy that supports computer science for all. ACM Transactions on Computing Education, 19(4), 36: 1–23.

  • Smith, M. (2016). Computer science for all. https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

  • Solórzano, D. G., & Yosso, T. J. (2002). Critical race methodology: Counter-storytelling as an analytical framework for education research. Qualitative Inquiry, 8(1), 23-44.

    Article  Google Scholar 

  • Stevens, A., & Stevens, J. (2016). Using mathematics to elect the U.S. president. Mathematics Teacher, 110(3), 192–198.

  • Strauss, A., & Corbin, J. (1998). Basics of qualitative research techniques. Sage Publications.

  • Sullivan, F. R., & Heffernan, J. (2016). Robotics construction kits as computational manipulatives for learning in the STEM disciplines. Journal of Research on Technology in Education, 48(2), 105–128.  https://doi.org/10.1080/15391523.2016.1146563

    Article  Google Scholar 

  • The LEGO® Group. (2023). Moves and turns: MINDSTORMS EV3 lesson plan. https://education.lego.com/en-us/lessons/ev3-robot-trainer/1-moves-and-turns#lesson-plan

  • United States Census Bureau. (2010). The Black population: 2010. 2010 Census Briefs. https://usa.ipums.org/usa/resources/voliii/pubdocs/2010/2010%20Census%20Briefs/c2010br-06.pdf#:~:text=DEFINITION%20OF%20BLACK%20OR%20AFRICAN%20AMERICAN%20USED%20IN,marked%20the%20%E2%80%9CBlack%2C%20African%20Am.%2C%20or%20Negro%E2%80%9D%20checkbox

  • United States Census Bureau. (2021). 2010 census urban and rural classification and urban area criteria. https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402.  https://doi.org/10.1037/a0028446

    Article  Google Scholar 

  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.  https://doi.org/10.1037/a0016127

    Article  Google Scholar 

  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.  https://doi.org/10.1145/1118178.1118215

    Article  Google Scholar 

  • Wing, J. M. (2010). Computational thinking: What and why? [Unpublished manuscript]. Pittsburgh, PA: Computer Science Department, Carnegie Mellon University. https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

  • Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014, March). Computational thinking in elementary and secondary teacher education. ACM Transactions on Computing Education, 14(1), 5:1–5:16.  https://doi.org/10.1145/2576872

Download references

Acknowledgements

The material presented in this paper is based upon work supported by the National Science Foundation under Grant No.1311810. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Funding

National Science Foundation, 1311810, Jacqueline Leonard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Leonard.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Computational Thinking (CT) Rubric for Robotics*

CT categories

Emergent (1)

Moderate (2)

Substantive (3)

Formulating problems [abstraction]

Follows specific steps to complete robotics task(s)

Deviates from specific directions somewhat to tweak robotics task(s) using trial and error

Follows unique instructions based on prior experience to complete robotics task(s)

Abstraction

Visualizes model to be constructed based on pictures (i.e., 2D model to 3D construction)

Visualizes model to be constructed by tinkering with physical parts

Visualizes model to be constructed from prior experience

Logical thinking [abstraction]

Uses sequential steps to complete robotics task(s)

Alters steps as needed to complete robotics task(s) using trial and error

Uses logical reasoning to move from one step to the next to complete robotics task(s)

Using algorithms [automation]

Uses MINDSTORMS® coding as described in a manual or online

Describes or tinkers with MINDSTORMS® coding based on trial and error

Uses MINDSTORMS® to create unique code based on the task(s) to be performed

Analyzing and implementing solutions [analysis]

Identifies a problem and/or considers alternatives

Tinkers with design or debugs code using trial and error to problem solve

Offers solutions to design or coding problems based on prior knowledge or experience

Generalizing and problem transfer [analysis]

Generalizes learning for a single step in a task

Generalizes learning from one step in a task to another step using trial and error

Generalizes or transfers learning from one task to another task using prior knowledge or experience

  1. *Adapted from Repenning et al. (2015) and ISTE (2011)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonard, J., Djonko-Moore, C., Francis, K.R. et al. Promoting Computational Thinking, Computational Participation, and Spatial Reasoning with LEGO Robotics. Can. J. Sci. Math. Techn. Educ. 23, 120–144 (2023). https://doi.org/10.1007/s42330-023-00267-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-023-00267-0

Keywords

Navigation