Skip to main content
Log in

Relations entre contexte, situation et schéma de résolution dans les problèmes d’estimation

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Over the course of this study, we analyze the problem-solving schemes proposed for two sequences of estimation problems. In the first sequence, the problems ask for estimates directly, whereas in the second, each estimate is asked for based on a contextualized situation. The first objective is to identify, statistically, if there is a link between the problem-solving strategy and the characteristics of the context within which the estimation task occurs. The second objective is to analyze the impact that the structure of the word problem has on students’ success. To these ends, we analyzed the written answers of N=224 and N=87 university students who are in teacher training. The results show that there is a significant relationship (independent of the sequence) between the variables of the problems based on context and the proposed problem-solving strategy. Moreover, we observe that modifying the structure of the word problem makes the development of a problem-solving scheme more difficult only when the required estimate is not asked for directly. The results allow us to make conclusions about the potential use of these sequences to promote flexibility in approaches to problem solving.

Résumé

Au cours de cette étude, nous analysons les schémas de résolution de deux séquences de problèmes d’estimation. Dans la première séquence, les questions d'estimations sont posées directement tandis que dans la seconde, chaque estimation est demandée à partir d'une situation contextualisée. Le premier objectif consiste à identifier statistiquement s'il existe une relation entre le plan de résolution et les caractéristiques du contexte dans lequel s'inscrit la tâche d'estimation réelle. Le deuxième objectif consiste à analyser l’influence de la structure de l’énoncé du problème sur la réussite des étudiants. Ainsi, nous avons analysé les productions de N = 224 et N = 87 étudiants universitaires qui se préparent à devenir professeurs des écoles. Les résultats montrent qu'il existe une relation significative (et indépendante de la séquence) entre les variables des problèmes liées au contexte et le plan de résolution proposé. De plus, on observe que le fait de modifier la structure de l'énoncé du problème rend plus difficile l’élaboration d’un schéma de résolution seulement quand le nombre à estimer n’est pas demandé directement. Les résultats permettent de déduire des conclusions concernant l'utilisation potentielle de ces séquences pour favoriser la flexibilité dans la résolution des problèmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Bibliography

  • Achmetli, K., Schukajlow, S., & Rakoczy, K. (2018). Multiple solutions for real-world problems, experience of competence and students’ procedural and conceptual knowledge. International Journal of Science and Mathematics Education, 17, 1605–1625. https://doi.org/10.1007/s10763-018-9936-5.

    Article  Google Scholar 

  • Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve Fermi problems involving large numbers. Educational Studies in Mathematics, 86(1), 79–96.

    Article  Google Scholar 

  • Arce, M., Marbán, J.M. & Palop, B. (2017). Aproximación al conocimiento común del contenido matemático en estudiantes para maestro de primaria de nuevo ingreso desde la prueba de evaluación final de Educación Primaria. Dans J.M. Muñoz-Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M.L. Callejo et J. Carrillo (Éds.), Investigación en Educación Matemática XXI (pp. 119-128). Zaragoza: SEIEM

  • Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Montana Mathematics Enthusiast, 6(3), 331–364.

    Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–408.

    Article  Google Scholar 

  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. Dans G. Kaiser, W. Blum, R. Borromeo Ferri et G. Stillman (Éds.), Trends in teaching and learning of mathematical modelling (pp. 15-30). New York: Springer.

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68.

    Article  Google Scholar 

  • Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM Mathematics Education, 38(2), 86-95.

    Article  Google Scholar 

  • Borromeo-Ferri, R. (2018). Learning how to teach mathematical modelling in school and teacher education. Springer International Publishing.

  • Chapman, O. (2015). Mathematics teachers’ knowledge for teaching problem solving. LUMAT (2013–2015 Issues), 3(1), 19-36.

    Google Scholar 

  • D’Ambrosio, U. (1989). Historical and Epistemological Bases for Modelling and Implications for the Curriculum. Dans Blum W., Niss M. et Huntley I. (Éds.) Modelling, Applications and Applied Problem Solving (pp. 22-28). Ellis Horwood: Chichester.

  • Days, H. C., Wheatley, G. H., & Kulm, G. (1979). Problem structure, cognitive level, and problem-solving performance. Journal for Research in Mathematics Education, 135-146.

  • Efthimiou, C. J., & Llewellyn, R. A. (2007). Cinema, Fermi problems and general education. Physics Education, 42(42), 253–261.

    Article  Google Scholar 

  • Elia, I., van den Heuvel-Panhuizen, M., & Kolovou, A. (2009). Exploring strategy use and strategy flexibility in non-routine problem solving by primary school high achievers in mathematics. ZDM Mathematics Education, 41(5), 605.

    Article  Google Scholar 

  • Escolano-Vizcarra, R., Gairín-Sallén, J. M., Jiménez-Gestal, C., Murillo-Ramón, J. & Roncal-Gómez, L. (2012). Perfil emocional y competencias matemáticas de los estudiantes del grado de educación primaria. Contextos Educativos, 15, 107–133.

    Google Scholar 

  • Ferrando, I., & Albarracín, L. (2019). Students from grade 2 to grade 10 solving a Fermi problem: analysis of emerging models. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-019-00292-z.

  • Ferrando, I., Albarracín, L., Gallart, C., García-Raffi, L. M., & Gorgorió, N. (2017). Análisis de los modelos matemáticos producidos durante la resolución de problemas de Fermi. Boletim de Educação Matemática, 31(57), 220-242.

    Article  Google Scholar 

  • Gallart C., Ferrando I., García-Raffi L.M., Albarracín L., & Gorgorió N. (2017). Design and Implementation of a Tool for Analysing Student Products When They Solve Fermi Problems. Dans Stillman G., Blum W., et Kaiser G. (Éds.) Mathematical Modelling and Applications. International Perspectives on the Teaching and Learning of Mathematical Modelling (pp 265-275). Springer: Cham.

  • Goldin, G. A., & McClintock, C. E. (Éds.) (1979). Task Variables in Mathematical Problem Solving. Ohio: Information Reference Center (ERIC/IRC), The Ohio State University.

  • Greer, B. (1993). The modeling perspective on wor(l)d problems. Journal of Mathematical Behavior, 12, 239-250.

    Google Scholar 

  • Hays, W.L. (1963). Statistics. New York, NY: Holt, Reinhart & Winston

    Google Scholar 

  • Heinze, A., Star, J.R. & Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education. ZDM Mathematics Education, 41, 535–540.

    Article  Google Scholar 

  • Howell, D.C. (1997). Statistical methods for Psychology (4th edition). Boston, MA: Duxbury.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 302–310.

    Article  Google Scholar 

  • Kilpatrick, J. (1978). Variables and methodologies in research on problem solving. Dans L. L. Hatfield et D. A. Bradbard (Éds.) Mathematical Problem Solving: Papers from a Research Workshop (pp. 14-27). Ohio: Information Reference Center (ERIC/IRC), The Ohio State University.

  • Leikin, R., & Levav-Waynberg, A. (2008). Solution spaces of multiple-solution connecting tasks as a mirror of the development of mathematics teachers’ knowledge. Canadian Journal of Science, Mathematics, and Technology Education, 8(3), 233-251.

    Article  Google Scholar 

  • Leiss, D., Plath, J., & Schwippert, K. (2019). Language and Mathematics - Key Factors influencing the Comprehension Process in reality-based Tasks. Mathematical Thinking and Learning. https://doi.org/10.1080/10986065.2019.1570835.

  • Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2), 157–189.

    Article  Google Scholar 

  • Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. Journal of Mathematical Behavior, 31, 73–90.

    Article  Google Scholar 

  • Llinares, S., & Krainer, K. (2006). Mathematics (student) teachers and teacher educators as learners, Dans Gutiérrez, A. et Boero, P. (Éds.), Handbook of Research on the Psychology of Mathematics Education. Past, Present and Future (pp. 429-459). Rotterdam: Sense Publishers.

  • Orrantia, J., Múñez, D., Vicente, S., Verschaffel, L. & Rosales, J. (2014). Processing of situational information in story problem texts. An analysis from on-line measures. Spanish Journal of Psychology, 17, 1–14.

    Article  Google Scholar 

  • Peter-Koop, A. (2009). Teaching and understanding mathematical modelling through Fermi-problem. Dans Clarke B., Grevholm B., et Millman R. (Éds.) Tasks in primary mathematics teacher education (pp. 131-146). New York, NY: Springer

  • Sáenz, C. (2007). La competencia matemática (en el sentido de PISA) de los futuros maestros. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 25(3), 355-366.

    Google Scholar 

  • Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14.

    Article  Google Scholar 

  • Sriraman, B., & Lesh, R. A. (2006). Modeling conceptions revisited. ZDM Mathematics Education, 38(3), 247-254.

    Article  Google Scholar 

  • Verschaffel, L., de Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4(4), 273–294.

    Article  Google Scholar 

  • Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Netherlands: Swets & Zeitlinger.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Ferrando.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrando, I., Segura, C. & Pla-Castells, M. Relations entre contexte, situation et schéma de résolution dans les problèmes d’estimation. Can. J. Sci. Math. Techn. Educ. 20, 557–573 (2020). https://doi.org/10.1007/s42330-020-00102-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-020-00102-w

Mots clés

Navigation