Skip to main content
Log in

Regularity Results on the Flow Maps of Periodic Dispersive Burgers Type Equations and the Gravity–Capillary Equations

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

In the first part of this paper we prove that the flow associated to a dispersive Burgers equation with a non local term of the form \(\left| D \right| ^{\alpha -1} \partial _x u\), \(\alpha \in [1,+\infty [\) is Lipschitz from bounded sets of \(H^s_0({\mathbb {T}};{\mathbb {R}})\) to \(C^0([0,T],H^{s-(2-\alpha )^+}_0({\mathbb {T}};{\mathbb {R}}))\) for \(T>0\) and \(s>\big \lceil \frac{\alpha }{\alpha -1}\big \rceil -\frac{1}{2}\), where \(H^s_0\) are the Sobolev spaces of functions with 0 mean value, proving that the result obtained in Said (A geometric proof of the quasi-linearity of the water-waves system and the incompressible Euler equations) is optimal on the torus. The proof relies on a paradifferential generalization of a complex Cole–Hopf gauge transformation introduced by Tao (J Hyperbol Differ Equ 1:27–49, 2004) for the Benjamin–Ono equation. For this we prove a generalization of the Baker–Campbell–Hausdorff formula for flows of hyperbolic paradifferential equations and prove the stability of the class of paradifferential operators modulo more regular remainders, under conjugation by such flows. For this we prove a new characterization of paradifferential operators in the spirit of Beals (Duke Math J 44:45–57, 1977). In the second part of this paper we use a paradifferential version of the previous method to prove that a re-normalization of the flow of the one dimensional periodic gravity–capillary equation is Lipschitz from bounded sets of \(H^s\) to \(C^0([0,T],H^{s-\frac{1}{2}})\) for \(T>0\) and \(s>3+\frac{1}{2}\). This proves that the result obtained in Said (A geometric proof of the quasi-linearity of the water-waves system and the incompressible Euler equations) is optimal for the water waves system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This manuscript has no associated data.

Notes

  1. Similar ideas were used in Appendix C of [3] to get estimates on a change of variable operator which are still in the usual symbol classes \(S^m_{1,0}\), the difficulty here being that we are no longer in those symbol classes.

  2. U is commonly called the "good" unknown of Alinhac. Introduced by Alazard-Metivier in [1] following earlier works by Lannes in [26].

References

  1. Alazard, T., Metivier, G.: Paralinearization of the Dirichlet to Neumann operator, and regularity of diamond waves. Commun. Partial Differ. Equ. 34(10–12), 1632–1704 (2009)

    Article  MATH  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: On the water waves equations with surface tension. Duke Math. J. 158(3), 413–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alazard, T., Baldi, P.: Gravity capillary standing water waves. Arch. Ration. Mech. Anal. 217(3), 741–830 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alazard, T., Baldi, P., Han-Kwan, D.: Control for water waves. J. Eur. Math. Soc. 20, 657–745 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alazard, T., Burq, N., Zuily, C.: Cauchy theory for the gravity water waves system with non localized initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 337–395 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Previous results of T. Alazard, P. Baldi, P. Gérard, Personal communication by T. Alazard

  7. Alinhac, S.: Paracomposition et operateurs paradifferentiels. Commun. Partial Differ. Equ. 11(1), 87–121 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beals, R.: Characterization of pseudodifferential operators and applications. Duke Math. J. 44(1), 45–57 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bony, J.M.: On the characterization of pseudodifferential operators (old and new), studies in phase space analysis with applications to PDEs. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 84. Birkhäuser, New York. https://doi.org/10.1007/978-1-4614-6348-1_2

  10. Castro, A., Córdoba, D., Gancedo, F.: Singularity fornation in a surface wave model. Nonlinearity (2010)

  11. Coifman, R., Meyer, Y.: Au-delà des opérateurs pseudo-différentiels. Astérisque 57, 210 (1978). http://numdam.org/item/AST_1978__57__1_0/

  12. Craig, W., Sulem, C.: Numerical simulation of gravity water waves. J. Comput. Phys. 108(1), 73–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gérard, P., Kappeler, T.: On the integrability of the Benjamin–Ono equation on the torus. Commun. Pure Appl. Math. 74(8), 1685–1747 (2020)

  14. Hörmander, L.: Fourier integral operators. I. Acta Math. 127, 79–183 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin; New York (1997)

    MATH  Google Scholar 

  16. Hörmander, L.: The Nash–Moser Theorem and Paradifferential Operators, Analysis, et cetera, pp. 429–449. Academic Press, Boston, MA (1990)

    Google Scholar 

  17. Hur, V.M.: On the formation of singularities for surface water waves. Commun. Pure Appl. Anal. 11(4), 1465–1474 (2012)

  18. Hur, V.M.: Wave Breaking in the Whitham equation. Adv. Math. 317, 410–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hur, V.M., Tao, L.: Wave breaking in a Shallow Water Model. SIAM J. Math. Anal. 50(1), 354–380

  20. Ifrim, M., Tataru, D.: Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation. Annales scientifiques de l’ENS, (4) 52(2), 297–335 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Ionescu, A.D., Kenig, C.E.: Global well posedness of the Benjamin–Ono equation in low-regularity spaces. J. Am. Math. Soc. 20, 753–798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kappeler, T., Topalov, P.: Global wellposedness of KdV in \(H^{-1}({\mathbb{T} },{\mathbb{R} })\). Duke Math. J. 135(2), 327–360 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Killip, R., Vişan, M.: KdV is well-posed in \(H^{-1}\). Ann. Math. 190(1), 249–305 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klein, C., Saut, J.-C.: A numerical approach to blow-up issues for dispersive perturbations of Burgers’ equation. Phys. D 295(296), 46–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koch, H., Tzvetkov, N.: On the local well-posedness of the Benjamin–Ono equation in \(H^s(\mathbb{R} )\). Int. Math. Res. Not. 26, 1449–1464 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lannes, D.: Well-posedness of the water waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  27. Linares, F., Pilod, D., Saut, J.-C.: Dispersive perturbations of Burgers and hyperbolic equations I: local theory. SIAM J. Math. Anal. 46, 1505–1537 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Metivier, G.: Para-differential calculus and applications to the Cauchy problem for non linear systems. Ennio de Giorgi Math. res. Center Publ, Edizione della Normale (2008)

  29. Molinet, L., Saut, J.C., Tzvetkov, N.: Well-posedness and ill-posedness results for the Kadomtsev–Petviashvili-I equation. Duke Math. J. 115(2), 353–384 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Molinet, L.: Global well-posedness in \(L^2\) for the periodic Benjamin–Ono equation. Am. J. Math. 130(3), 635–683 (2008)

    Article  MATH  Google Scholar 

  31. Molinet, L.: Sharp ill-posedness results for the KdV and mKdV equations on the torus. Adv. Math. 230(4–6), 1895–1930 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Molinet, L., Pilod, D., Vento, S.: On well-posedness for some dispersive perturbations of Burgers’ equation. Annales de l’Institut Henri Poincareé C, Analyse non linéaire 35(7), 1719–1756 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pasqualotto, F., Oh, S.-J.: Gradient blow-up for dispersive and dissipative perturbations of the Burgers equation. Preprint: arXiv:2107.07172 (2021)

  34. Said, A.R.: On paracompisition and change of variables in paradifferential operators. arXiv preprint, arXiv:2002.02943

  35. Said, A.R.: A geometric proof of the quasi-linearity of the water-waves system and the incompressible Euler equations. To appear in SIAM Journal on Mathematical Analysis

  36. Said, A.R.: On the Cauchy problem of dispersive Burgers type equations. To appear in Indiana University Mathematics Journal

  37. Saut, J.C.: Asymptotic models for surface and internal waves. In: 29 Brazilian Mathematical Colloquia. IMPA Mathematical Publications (2013)

  38. Saut, J.C.: Benjamin–Ono and intermediate long wave equation: modeling, IST and PDE. arXiv preprint, arXiv:1811.08652 (2018)

  39. Saut, J.C., Wang, Y.: The wave breaking for Whitham-type equations revisited. arXiv preprint, arXiv:2006.03803

  40. Shnirelman, A.: Microglobal analysis of the Euler equations. J. Math. Fluid Mech. 7(Suppl 3), S387 (2005). https://doi.org/10.1007/s00021-005-0167-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Tao, T.: Global well-posedness of the Benjamin–Ono equation in \(H^1(\mathbb{R} )\). J. Hyperbol. Differ. Equ. 1, 27–49 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Taylor, M.E.: Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. American Mathematical Soc., Providence (2007)

    Book  MATH  Google Scholar 

  43. Taylor, M.E.: Pseudodifferential Operators and Nonlinear PDE. Brickhauser, Boston (1991)

    Book  MATH  Google Scholar 

  44. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere gratitude to my thesis advisor Thomas Alazard. I would also like to thank the referees for their valuable input that greatly improved the manuscript.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Rimah Said.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest. Financial interests: The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Paradifferential Calculus

Appendix A. Paradifferential Calculus

In this paragraph we review classic notations and results about paradifferential and pseudodifferential calculus that we need in this paper. We follow the presentations in [14, 15, 28, 42] which give an accessible and complete presentation.

Notation A.1

In the following presentation we will use the usual definitions and standard notations for regular functions \(C^k\), \(C^k_b\) for bounded ones and \(C^k_0\) for those with compact support, the distribution space \({\mathscr {D}}'\), \({\mathscr {E}}'\) for those distribution with compact support, \({\mathscr {D}}'^k\),\({\mathscr {E}}'^k\) for distributions of order k, \(L^p\) Lebesgue spaces, \(H^s\) and \(W^{p,q}\)Sobolev spaces and finally \({\mathscr {S}}\) for the Schwartz class and it’s dual \({\mathscr {S}}'\). All of those spaces are equipped with their standard topologies. We also use the Landau notation \(O_{\left\| \ \right\| }(X)\).

For the definition of the periodic symbol classes we will need the following definitions and notations.

Remark A.1

For clarity in this section and the appendix we again present the symbolic calculus on \(\mathbb {R}\). All the results stated here extend tautologically to the case of \(\mathbb {T}\) by applying the rules of Remark 4.1.

1.1 A.1. Littlewood–Paley Theory

Definition A.1

(Littlewood–Paley decomposition) Pick \(P_0\in C^\infty _0({\mathbb {R}}^d)\) so that:

$$\begin{aligned} P_0(\xi )=1 \quad \text { for } \left| \xi \right| <1 \text { and } P_0(\xi )=0 \text { for } \left| \xi \right| >2. \end{aligned}$$

We define a dyadic decomposition of unity by:

$$\begin{aligned} \text {for } k \ge 1, \ P_{\le k}(\xi )=P_0(2^{-k}\xi ), \ P_k(\xi )=P_{\le k}(\xi )-P_{\le k-1}(\xi ). \end{aligned}$$

Thus,

$$\begin{aligned} P_{\le k}(\xi )=\sum _{0\le j \le k}P_j(\xi ) \quad \text { and }\quad 1=\sum _{j=0}^\infty P_j(\xi ). \end{aligned}$$

Introduce the operator acting on \({\mathscr {S}} '({\mathbb {R}}^d)\):

$$\begin{aligned} P_{\le k}u={\mathscr {F}}^{-1}(P_{\le k}(\xi )u) \quad \text { and }\quad u_k={\mathscr {F}}^{-1}(P_k(\xi )u). \end{aligned}$$

Thus,

$$\begin{aligned} u=\sum _k u_k. \end{aligned}$$

Finally put for \(k\ge 1, C_k={{\,\textrm{supp}\,}}\ P_k\) the set of rings associated to this decomposition.

An interesting property of the Littlewood–Paley decomposition is that even if the decomposed function is merely a distribution the terms of the decomposition are regular, indeed they all have compact spectrum and thus are entire functions. On classical functions spaces this regularization effect can be "measured" by the following inequalities due to Bernstein.

Proposition A.1

(Bernstein’s inequalities) Suppose that \(a\in L^p({\mathbb {R}}^d)\) has its spectrum contained in the ball \(\left\{ \left| \xi \right| \le \lambda \right\} \).

Then \(a\in C^\infty \) and for all \(\alpha \in {\mathbb {N}}^d\) and \(1\le p \le q \le +\infty \), there is \(C_{\alpha ,p,q}\) (independent of \(\lambda \)) such that

$$\begin{aligned} \left\| \partial ^{\alpha }_x a \right\| _{L^q} \le C_{\alpha ,p,q} \lambda ^{\left| \alpha \right| +\frac{d}{p}-\frac{d}{q}}\left\| a \right\| _{L^p}. \end{aligned}$$

In particular,

$$\begin{aligned}{} & {} \left\| \partial ^{\alpha }_x a \right\| _{L^q} \le C_{\alpha } \lambda ^{\left| \alpha \right| }\left\| a \right\| _{L^p}, \text { and for } p=2, p=\infty \\{} & {} \left\| a \right\| _{L^\infty }\le C \lambda ^{\frac{d}{2}} \left\| a \right\| _{L^2}. \end{aligned}$$

If moreover a has its spectrum is included in \( \left\{ 0<\mu \le \left| \xi \right| \le \lambda \right\} \) then:

$$\begin{aligned} C_{\alpha ,q}^{-1} \mu ^{\left| \alpha \right| }\left\| a \right\| _{L^q}\le \left\| \partial ^{\alpha }_x a \right\| _{L^q} \le C_{\alpha ,q} \lambda ^{\left| \alpha \right| }\left\| a \right\| _{L^q}. \end{aligned}$$

Proposition A.2

For all \(\mu >0\), there is a constant C such that for all \(\lambda >0\) and for all \(\alpha \in W^{\mu ,\infty }\) with spectrum contained in \(\left\{ \left| \xi \right| \ge \lambda \right\} \). one has the following estimate:

$$\begin{aligned} \left\| a \right\| _{L^\infty }\le C \lambda ^{-\mu } \left\| a \right\| _{W^{\mu ,\infty }}. \end{aligned}$$

Definition A.2

(Zygmund spaces on \({\mathbb {R}}^d\)) For \(r\in {\mathbb {R}}\) we define the space:

$$\begin{aligned} C^r_*({\mathbb {R}}^d) \subset {\mathscr {S}}'({\mathbb {R}}^d), \ C^r_*({\mathbb {R}}^d)=\left\{ u\in {\mathscr {S}}'({\mathbb {R}}^d),\left\| u \right\| _{C_*^r}=\sup _q 2^{qr}\left\| u_q \right\| _{L^\infty }<\infty \right\} \end{aligned}$$

equipped with its canonical topology giving it a Banach space structure.

It’s a classical result that for \(r\notin {\mathbb {N}}\), \(C^r_*({\mathbb {R}}^d)=W^{r,\infty }({\mathbb {R}}^d)\) the classic Hölder spaces.

Proposition A.3

Let \(\hbox {B}\) be a ball with center 0. There exists a constant C such that for all \(r>0\) and for all \((u_q)_{q\in {\mathbb {N}}}\) in \({\mathscr {S}}'({\mathbb {R}}^d)\) verifying:

$$\begin{aligned}{} & {} \forall q,{{\,\textrm{supp}\,}}\hat{u}_q \subset 2^q \hbox {B}\quad \text { and }\quad (2^{qr}\left\| u_q \right\| _\infty )_{q\in {\mathbb {N}}} \text { is bounded,} \\{} & {} \quad \text {then}, u=\sum _q u_q \in C^r_*({\mathbb {R}}^d) \text { and } \left\| u \right\| _{C_*^r} \le \frac{C}{1-2^{-r}} \displaystyle {\sup _{q \in {\mathbb {N}}}}\ 2^{qr}\left\| u_q \right\| _{L^\infty }. \end{aligned}$$

Definition A.3

(Sobolev spaces on \({\mathbb {R}}^d\)) It is also a classical result that for \(s\in {\mathbb {R}}\):

$$\begin{aligned} H^s({\mathbb {R}}^d)=\left\{ u\in {\mathscr {S}}'({\mathbb {R}}^d),\left\| u \right\| _s= \bigg (\sum _q 2^{2qs} {\left\| u_q \right\| _{L^2}}^2 \bigg )^{\frac{1}{2}}<\infty \right\} \end{aligned}$$

with the right hand side equipped with its canonical topology giving it a Hilbert space structure and \(\left\| \ \right\| _s\) is equivalent to the usual norm on \(H^s\).

Proposition A.4

Let \(\hbox {B}\) be a ball with center 0. There exists a constant C such that for all \(s>0\) and for all \((u_q)_{\in {\mathbb {N}}}\) in \({\mathscr {S}}'({\mathbb {R}}^d)\) verifying:

$$\begin{aligned}{} & {} \forall q, \ {{\,\textrm{supp}\,}}\hat{u}_q \subset 2^q \hbox {B}\quad \text { and }\quad (2^{qs}\left\| u_q \right\| _{L^2})_{q\in {\mathbb {N}}} \text { is in } L^2({\mathbb {N}}), \\{} & {} \quad \text {then}, \ u=\sum _q u_q \in H^s({\mathbb {R}}^d) \text { and } \left\| u \right\| _s \le \frac{C}{1-2^{-s}} \bigg (\sum _q 2^{2qs} {\left\| u_q \right\| _{L^2}}^2 \bigg )^{\frac{1}{2}}. \end{aligned}$$

We recall the usual nonlinear estimates in Sobolev spaces:

  • If \(u_j\in H^{s_j}({\mathbb {R}}^d), j=1,2\), and \(s_1+s_2>0\) then \(u_1u_2 \in H^{s_0}({\mathbb {R}}^d)\) and if

    $$\begin{aligned}{} & {} s_0\le s_j, j=1,2 \quad \text { and }\quad s_0\le s_1+s_2-\frac{d}{2}, \ \ \ \\{} & {} \quad \text {then }\exists K\in {\mathbb {R}}, \left\| u_1u_2 \right\| _{H^{s_0}}\le K \left\| u_1 \right\| _{H^{s_1}}\left\| u_2 \right\| _{H^{s_2}}, \end{aligned}$$

    where the last inequality is strict if \(s_1\) or \(s_2\) or \(-s_0\) is equal to \(\frac{d}{2}\).

  • For all \(C^\infty \) function F vanishing at the origin, if \(u \in H^s({\mathbb {R}}^d)\) with \(s>\frac{d}{2}\), then

    $$\begin{aligned} \left\| F(u) \right\| _{H^s} \le C(\left\| u \right\| _{H^s}),\end{aligned}$$

    for some non decreasing function C depending only on F.

1.2 A.2. Paradifferential Operators

We start by the definition of symbols with limited spatial regularity. Let \({\mathscr {W}}\subset {\mathscr {S}}'\) be a Banach space.

Definition A.4

Given \(m \in {\mathbb {R}}\), \(\Gamma ^m_{\mathscr {W}}({\mathbb {R}})\) denotes the space of locally bounded functions \(a(x,\xi )\) on \({\mathbb {R}}\times ({\mathbb {R}}{\setminus } 0)\), which are \(C^\infty \) with respect to \(\xi \) for \(\xi \ne 0\) and such that, for all \(\alpha \in {\mathbb {N}}\) and for all \(\xi \ne 0\), the function \(x \mapsto \partial ^\alpha _\xi a(x,\xi )\) belongs to \({\mathscr {W}}\) and there exists a constant \(C_\alpha \) such that, for all \(\epsilon >0\):

$$\begin{aligned} \forall \left| \xi \right| >\epsilon , \left\| \partial ^\alpha _\xi a(.,\xi ) \right\| _{{\mathscr {W}}}\le C_{\alpha ,\epsilon } (1+\left| \xi \right| )^{m-\left| \alpha \right| }. \end{aligned}$$
(A.1)

The spaces \(\Gamma ^m_{\mathscr {W}}({\mathbb {R}})\) are equipped with their natural Fréchet topology induced by the semi-norms defined by the best constants in (A.1).

For quantitative estimates we introduce as in [28]:

Definition A.5

For \(m\in {\mathbb {R}}\) and \(a \in \Gamma ^m_{\mathscr {W}}({\mathbb {R}})\), we set

$$\begin{aligned}M^m_{\mathscr {W}}(a;n)=\sup _{\left| \alpha \right| \le n} \ \sup _{\left| \xi \right| \ge \frac{1}{2}}\left\| (1+\left| \xi \right| )^{m-\left| \alpha \right| }\partial ^\alpha _\xi a(.,\xi ) \right\| _{{\mathscr {W}}}, \text { for } n\in {\mathbb {N}}.\end{aligned}$$

For \({\mathscr {W}}=W^{\rho ,\infty },\rho \ge 0\), we write:

$$\begin{aligned} \Gamma ^m_{W^{\rho ,\infty }}({\mathbb {R}})=\Gamma ^m_\rho ({\mathbb {R}}) \quad \text { and }\quad M^m_\rho (a)=M^m_{W^{\rho ,\infty }}(a;1). \end{aligned}$$

Moreover we introduce the following spaces equipped with their natural Fréchet space structure:

$$\begin{aligned}{} & {} C^{\infty }_b({\mathbb {R}})=\cap _{\rho \ge 0}W^{\rho ,\infty }, \ \Gamma ^m_\infty ({\mathbb {R}})=\cap _{\rho \ge 0}\Gamma ^m_\rho ({\mathbb {R}}), \ \Gamma ^{-\infty }_\rho ({\mathbb {R}})=\cap _{m\in {\mathbb {R}}}\Gamma ^m_\rho ({\mathbb {R}}) \text { and,} \\{} & {} \Gamma ^{-\infty }_\infty ({\mathbb {R}})=\cap _{\rho \ge 0}\cap _{m\in {\mathbb {R}}}\Gamma ^m_\rho ({\mathbb {R}}). \end{aligned}$$

In higher dimensions the 1 in the definition of \(M^m_\rho \) should be replaced by \(1+\lfloor \frac{d}{2}\rfloor \).

Definition A.6

Define an admissible cutoff function as a function \(\psi ^{B,b}\in C^\infty (\hat{D}^2)\), \(B>1,b>0\) that verifies:

  1. (1)
    $$\begin{aligned} \psi ^{B,b}(\xi ,\eta )=0 \quad \text { when } \left| \xi \right| < B\left| \eta \right| +b, \text { and } \psi ^{B,b}(\xi ,\eta )=1 \text { when } \left| \xi \right| >B\left| \eta \right| +b+1. \end{aligned}$$
  2. (2)

    for all \((\alpha ,\beta )\in {\mathbb {N}}^d \times {\mathbb {N}}^d,\) there is \(C_{\alpha _\beta }\), with \(C_{0,0}\le 1\), such that:

    $$\begin{aligned} \forall (\xi ,\eta ): \left| \partial _\xi ^\alpha \partial _\eta ^\beta \psi ^{B,b}(\xi ,\eta ) \right| \le C_{\alpha ,\beta } (1+\left| \xi \right| )^{-\left| \alpha \right| -\left| \beta \right| }. \end{aligned}$$
    (A.2)

Definition A.7

Consider a real numbers \(m\in {\mathbb {R}}\), a symbol \(a\in \Gamma ^m_{\mathscr {W}}\) and an admissible cutoff function \(\psi ^{B,b}\) define the paradifferential operator \(T_a\) by:

$$\begin{aligned} \widehat{T_a u}(\xi )=(2\pi )^{-1}\int \limits _{{\mathbb {R}}}\psi ^{B,b}(\xi -\eta ,\eta )\hat{a}(\xi -\eta ,\eta )\hat{u}(\eta )\textrm{d}\eta , \end{aligned}$$

where \(\hat{a}(\eta ,\xi )=\int e^{-ix\cdot \eta }a(x,\xi )\textrm{d}x\) is the Fourier transform of a with respect to the first variable. In the language of pseudodifferential operators:

$$\begin{aligned} T_a u={{\,\textrm{Op}\,}}(\sigma _a)u, \quad \text { where } {\mathscr {F}}_x\sigma _a(\xi ,\eta )=\psi ^{B,b}(\xi ,\eta ) {\mathscr {F}}_x a(\xi ,\eta ). \end{aligned}$$

Let \(G_{\psi ^{B,b}}(x,\eta )={\mathscr {F}}^{-1}_x\psi ^{B,b}(\cdot ,\eta )\) then \(\sigma _a(\cdot ,\eta )=G_{\psi ^{B,b}}(\cdot ,\eta )*a(\cdot ,\eta )\),in particular for a Fourier multiplier m(D), \(T_{m(D)}\ne 0\).

An important property of paradifferential operators is their action on functions with localized spectrum.

Lemma A.1

Consider two real numbers \(m\in {\mathbb {R}}\), \(\rho \ge 0\), a symbol \(a\in \Gamma ^m_0({\mathbb {R}})\), an admissible cutoff function \(\psi ^{B,b}\) and \(u \in {\mathscr {S}}({\mathbb {R}}^d)\).

  • For \(R>>b\), if \({{\,\textrm{supp}\,}}{\mathscr {F}}u \subset \left\{ \left| \xi \right| \le R\right\} ,\) then:

    $$\begin{aligned} {{\,\textrm{supp}\,}}{\mathscr {F}}T_a u \subset \left\{ \left| \xi \right| \le (1+\frac{1}{B})R-\frac{b}{B}\right\} , \end{aligned}$$
    (A.3)
  • For \(R>>b\), if \({{\,\textrm{supp}\,}}{\mathscr {F}}u \subset \left\{ \left| \xi \right| \ge R\right\} ,\) then:

    $$\begin{aligned} {{\,\textrm{supp}\,}}{\mathscr {F}}T_a u \subset \left\{ \left| \xi \right| \ge \left( 1-\frac{1}{B}\right) R+\frac{b}{B}\right\} , \end{aligned}$$
    (A.4)

The main features of symbolic calculus for paradifferential operators are given by the following theorems taken from [28] and [34].

Theorem A.1

Let \(m \in {\mathbb {R}}\). if \(a\in \Gamma ^m_0({\mathbb {R}})\), then \(T_a\) is of order m. Moreover, for all \(\mu \in {\mathbb {R}}\) there exists a constant K such that:

$$\begin{aligned}{} & {} \left\| T_a \right\| _{H^\mu \rightarrow H^{\mu -m}}\le K M^m_0(a),\text { and,}\\{} & {} \left\| T_a \right\| _{W^{\mu ,\infty } \rightarrow W^{\mu -m,\infty }}\le K M^m_0(a), \mu \notin {\mathbb {N}}. \end{aligned}$$

Theorem A.2

Let \(m,m' \in {\mathbb {R}}\), and \(\rho >0\), \(a \in \Gamma ^m_\rho ({\mathbb {R}})\)and \(b \in \Gamma ^{m'}_\rho ({\mathbb {R}})\).

  • Composition: Then \(T_a T_b\) is a paradifferential operator with symbol:

    $$\begin{aligned}{} & {} a \otimes b\in \Gamma ^{m+m'}_\rho ({\mathbb {R}}),\text { more precisely,} \\{} & {} T^{\psi ^{B,b}}_a T^{\psi ^{B',b}}_b= T^{\psi ^{\frac{BB'}{B+B'+1},b}}_{a\otimes b}. \end{aligned}$$

    Moreover \(T_a T_b- T_{a\#b}\) is of order \(m+m'-\rho \) where \(a \#b \) is defined by:

    $$\begin{aligned}a \#b=\sum _{\left| \alpha \right| <\rho }\frac{1}{i^{\left| \alpha \right| }\alpha !} \partial ^\alpha _\xi a \partial ^\alpha _x b, \end{aligned}$$

    and there exists \(r\in \Gamma ^{m+m'-\rho }_0({\mathbb {R}})\) such that:

    $$\begin{aligned} M^{m+m'-\rho }_0(r) \le K (M^m_\rho (a) M^{m'}_0(b)+M^m_0 (a) M^{m'}_\rho (b)), \end{aligned}$$

    and we have

    $$\begin{aligned} T^{\psi ^{B,b}}_a T^{\psi ^{B',b}}_b- T^{\psi ^{\frac{BB'}{B+B'+1},b}}_{a\#b}=T^{\psi ^{\frac{BB'}{B+B'+1},b}}_r. \end{aligned}$$
  • Adjoint: The adjoint operator of \(T_a\), \(T_a^*\) is a paradifferential operator of order m with symbol \(a^*\) defined by:

    $$\begin{aligned} a^*=\sum _{\left| \alpha \right| <\rho } \frac{1}{i^{\left| \alpha \right| }\alpha !}\partial ^\alpha _\xi \partial ^\alpha _x \bar{a}. \end{aligned}$$

    Moreover, for all \(\mu \in {\mathbb {R}}\) there exists a constant K such that

    $$\begin{aligned} \left\| T_a^*-T_{a^*} \right\| _{H^\mu \rightarrow H^{\mu -m+\rho }} \le K M^m_\rho (a). \end{aligned}$$

If \(a=a(x)\) is a function of x only then the paradifferential operator \(T_a\) is called a paraproduct. It follows from Theorem A.2 and the Sobolev embedding that:

  • If \(a \in H^\alpha ({\mathbb {R}})\) and \(b \in H^\beta ({\mathbb {R}})\) with \(\alpha ,\beta >\frac{d}{2}\), then

    $$\begin{aligned}T_aT_b-T_{ab} \text { is of order } -\bigg ( \min \left\{ \alpha ,\beta \right\} -\frac{d}{2} \bigg ).\end{aligned}$$
  • If \(a \in H^\alpha ({\mathbb {R}})\) with \(\alpha >\frac{d}{2}\), then

    $$\begin{aligned}T_a^*-T_{a^*} \text { is of order } -\bigg (\alpha -\frac{d}{2} \bigg ).\end{aligned}$$
  • If \(a \in W^{r,\infty }({\mathbb {R}})\), \(r\in {\mathbb {N}}\) then:

    $$\begin{aligned}\left\| au-T_au \right\| _{H^r} \le C \left\| a \right\| _{W^{r,\infty }} \left\| u \right\| _{L^2}.\end{aligned}$$

An important feature of paraproducts is that they are well defined for function \(a=a(x)\) which are not \(L^\infty \) but merely in some Sobolev spaces \(H^r\) with \(r<\frac{d}{2}\).

Proposition A.5

Let \(m>0\). If \(a\in H^{\frac{d}{2}-m}({\mathbb {R}})\) and \(u \in H^\mu ({\mathbb {R}})\) then \(T_au \in H^{\mu -m}({\mathbb {R}})\). Moreover,

$$\begin{aligned} \left\| T_a u \right\| _{H^{\mu -m}}\le K \left\| a \right\| _{H^{\frac{d}{2} -m}}\left\| u \right\| _{H^{\mu }} \end{aligned}$$

A main feature of paraproducts is the existence of paralinearisation theorems which allow us to replace nonlinear expressions by paradifferential expressions, at the price of error terms which are smoother than the main terms.

Theorem A.3

Let \(\alpha , \beta ,\kappa \in {\mathbb {R}}\) be such that \(\alpha ,\beta > \frac{d}{2}\) and \(\kappa \ge 0\), then

  • Bony’s Linearization Theorem: For all \(C^\infty \) function F, if \(a \in H^\alpha ({\mathbb {R}})\) then;

    $$\begin{aligned} F(a)- F(0)-T_{F'(a)}a \in H^{2\alpha -\frac{d}{2}} ({\mathbb {R}}). \end{aligned}$$
  • If \(a\in H^\alpha ({\mathbb {R}})\), \(b\in H^\beta ({\mathbb {R}})\) and \(c\in W^{\kappa ,\infty }\), then \(R(a,b)=ab-T_ab-T_ba \in H^{\alpha + \beta -\frac{d}{2}} ({\mathbb {R}})\) and \(R(a,c)=ac-T_ac-T_ca \in H^{\alpha + \kappa } ({\mathbb {R}})\). Moreover there exists a positive constant K independent of a, b and c such that:

    $$\begin{aligned} {\left\{ \begin{array}{ll} \left\| R(a,b) \right\| _{H^{\alpha + \beta -\frac{d}{2}} }=\left\| ab-T_ab-T_ba \right\| _{H^{\alpha + \beta -\frac{d}{2}} }\le K \left\| a \right\| _{H^\alpha } \left\| b \right\| _{H^\beta },\\ \left\| R(a,c) \right\| _{H^{\alpha + \kappa } }\le K \left\| a \right\| _{H^\alpha } \left\| c \right\| _{W^{\kappa ,\infty }}. \end{array}\right. } \end{aligned}$$
    (A.5)

1.3 A.3. Paracomposition

We recall the main properties of the paracomposition operator first introduced by Alinhac in [7] to treat low regularity change of variables. Here we present the results we reviewed and generalized in some cases in [34].

Theorem A.4

Let \(\chi :{\mathbb {R}}^d \rightarrow {\mathbb {R}}^d\) be a \(C^{1+r}\) diffeomorphism with \(D\chi \in W^{r,\infty }\), \(r>0, r\notin {\mathbb {N}}\) and take \(s \in {\mathbb {R}}\) then the following map is continuous:

$$\begin{aligned} H^s({\mathbb {R}}^d)&\rightarrow H^s({\mathbb {R}}^d)\\ u&\mapsto \chi ^* u=\sum _{k\ge 0} \sum _{\begin{array}{c} l\ge 0 \\ k-N \le l \le k+N \end{array}}P_l(D)u_k\circ \chi , \end{aligned}$$

where \(N \in {\mathbb {N}}\) is such that \(2^{N}>\sup _{k,{\mathbb {R}}^d} \left| \Phi _k D\chi \right| ^{-1}\) and \(2^{N}>\sup _{k,{\mathbb {R}}^d} \left| \Phi _k D\chi \right| \).

Taking \(\tilde{\chi }:{\mathbb {R}}^d \rightarrow {\mathbb {R}}^d\) a \(C^{1+\tilde{r}}\) diffeomorphism with \(D\chi \in W^{\tilde{r},\infty }\) map with \(\tilde{r}>0\), then the previous operation has the natural fonctorial property:

$$\begin{aligned}{} & {} \forall u \in H^s({\mathbb {R}}^d), \chi ^* \tilde{\chi }^* u= ({\chi \circ \tilde{\chi }})^* u +Ru,\\{} & {} \quad \text {with, } R:H^{s}({\mathbb {R}}^d) \rightarrow H^{s+min(r,\tilde{r})}({\mathbb {R}}^d) \text { continous}. \end{aligned}$$

We now give the key paralinearization theorem taking into account the paracomposition operator.

Theorem A.5

Let u be a \(W^{1,\infty }({\mathbb {R}}^d)\) map and \(\chi :{\mathbb {R}}^d \rightarrow {\mathbb {R}}^d\) be a \(C^{1+r}\) diffeomorphism with \(D\chi \in W^{r,\infty }\), \(r>0, r\notin {\mathbb {N}}\). Then:

$$\begin{aligned} u \circ \chi (x)=\chi ^* u(x)+ T_{Du\circ \chi }\chi (x)+ R_0(x)+R_1(x)+R_2(x) \end{aligned}$$

where the paracomposition given in the previous theorem verifies the estimates:

$$\begin{aligned}{} & {} \forall s \in {\mathbb {R}}, \left\| \chi ^* u(x) \right\| _{H^s}\le C(\left\| D\chi \right\| _{L^\infty })\left\| u(x) \right\| _{H^s},\\{} & {} \quad u'\circ \chi \in \Gamma ^0_{W^{0,\infty }({\mathbb {R}}^d)}({\mathbb {R}}^d) \quad \text { for } u \text { Lipchitz,} \end{aligned}$$

and the remainders verify the estimates:

$$\begin{aligned}{} & {} \left\| R_0 \right\| _{H^{1+r +min(1+\rho ,s-\frac{d}{2})}} \le C\left\| D\chi \right\| _{C_*^r}\left\| u \right\| _{H^{1+s}} \\{} & {} \left\| R_1 \right\| _{H^{1+r+s}} \le C(\left\| D\chi \right\| _{L^\infty }) \left\| D\chi \right\| _{C_*^r}\left\| u \right\| _{H^{1+s}}. \\{} & {} \left\| R_2 \right\| _{H^{1+r+s}} \le C\left( \left\| D\chi \right\| _{L^\infty },\left\| D\chi ^{-1} \right\| _{L^\infty }\right) \left\| D\chi \right\| _{C_*^r}\left\| u \right\| _{H^{1+s}}. \end{aligned}$$

Finally the commutation between a paradifferential operator \(a \in \Gamma ^m_{\beta }({\mathbb {R}}^d)\) and a paracomposition operator \(\chi ^*\) is given by the following

$$\begin{aligned} \chi ^* T_a u =T_{a^*} \chi ^* u+T_{{q}^*} \chi ^* u \text { with } q \in \Gamma ^{m-\beta }_{0}({\mathbb {R}}^d), \end{aligned}$$

where \(a^*\) has the local expansion:

$$\begin{aligned} a^*(x,\xi ) \sim \sum _{\begin{array}{c} \alpha \\ \left| \alpha \right| \le \lfloor min(r,\rho ) \rfloor \end{array}}\frac{1}{\alpha !}\partial ^\alpha a(\chi (x),D\chi ^{-1}(\chi (x))^\top \xi )Q_{\alpha }(\chi (x),\xi )\in \Gamma ^m_{\min (r,\beta )}({\mathbb {R}}^d),\nonumber \\ \end{aligned}$$
(A.6)

where,

$$\begin{aligned} P_{\alpha }(x',\xi )=D^\alpha _{y'}(e^{i(\chi ^{-1}(y')-\chi ^{-1}(x')-D \chi ^{-1}(x')(y'-x')).\xi })_{|y'=x'} \end{aligned}$$

and \(Q_{\alpha }\) is polynomial in \(\xi \) of degree \(\le \frac{\left| \alpha \right| }{2}\), with \(Q_{0}=1, Q_{1}=0\).

Remark A.2

The simplest example for the paracomposition operator is when \(\chi (x)=Ax\) is a linear operator and in that case we see that if N is chosen sufficiently large in the definition of \(\chi ^*\):

$$\begin{aligned} u(Ax) = (Ax)^*u,\text { and } T_{u'(Ax)}Ax = 0. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, A.R. Regularity Results on the Flow Maps of Periodic Dispersive Burgers Type Equations and the Gravity–Capillary Equations. Water Waves 5, 101–159 (2023). https://doi.org/10.1007/s42286-023-00075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-023-00075-x

Keywords

Navigation