Skip to main content

A Morawetz Inequality for Gravity-Capillary Water Waves at Low Bond Number

Abstract

This paper is devoted to the 2D gravity-capillary water waves equations in their Hamiltonian formulation, addressing the general question of proving Morawetz inequalities. We continue the analysis initiated in our previous work, where we have established local energy decay estimates for gravity waves. Here we add surface tension and prove a stronger estimate with a local regularity gain, akin to the smoothing effect for dispersive equations. Our main result holds globally in time and holds for genuinely nonlinear waves, since we are only assuming some very mild uniform Sobolev bounds for the solutions. Furthermore, it is uniform both in the infinite depth limit and the zero surface tension limit.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    See, e.g., [8, 41].

  2. 2.

    This should be interpreted as \(\kappa \le c g\) for a small universal constant c,  which in particular does not depend on T and h.

  3. 3.

    These two operators coincide in the infinite depth setting.

  4. 4.

    Here for the last term in \({\mathrm{LE}}_\eta \) we also use \(\int \theta _y \theta \mathrm{d}y = \frac{1}{2} \eta ^2\).

References

  1. 1.

    Agrawal, S.: Angled crested type water waves with surface tension: wellposedness of the problem (2019). arXiv:1909.09671

  2. 2.

    Ai, A.: Low regularity solutions for gravity water waves II: the 2D case (2018). arXiv e-prints. arXiv:1811.10504. Annals of PDE, to appear

  3. 3.

    Ai, A.: Low regularity solutions for gravity water waves. Water Waves 1(1), 145–215 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Alazard, T., Burq, N., Zuily, C.: On the water-wave equations with surface tension. Duke Math. J. 158(3), 413–499 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Alazard, T., Delort, J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér. (4) 48(5), 1149–1238 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Alazard, T., Ifrim, M., Tataru, D.: A Morawetz inequality for water waves (2018). arXiv e-prints. arXiv:1806.08443

  7. 7.

    Ambrose, D.M., Masmoudi, N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

  9. 9.

    Benjamin, T.B., Olver, P.J.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137–185 (1982)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Beyer, K., Günther, M.: On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci. 21(12), 1149–1183 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Finite time singularities for water waves with surface tension. J. Math. Phys. 53(11), 115622 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Finite time singularities for the free boundary incompressible Euler equations. Ann. Math. (2) 178(3), 1061–1134 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Chen, R.M., Marzuola, J., Spirn, D., Wright, J.D.: On the regularity of the flow map for the gravity-capillary equations. J. Funct. Anal. 264(3), 752–782 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Christianson, H., Hur, V.M., Staffilani, G.: Strichartz estimates for the water-wave problem with surface tension. Commun. Partial Differ. Equ. 35(12), 2195–2252 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R}}^3\). Ann. Math. (2) 167(3), 767–865 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Constantin, P., Saut, J.-C.: Local smoothing properties of dispersive equations. J. Am. Math. Soc. 1(2), 413–439 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007) (electronic)

  18. 18.

    Coutand, D., Shkoller, S.: On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. Commun. Math. Phys. 325(1), 143–183 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Craig, W., Nicholls, D.: Travelling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32(2), 323–359 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Craig, W., Sulem, C., Sulem, P.-L.: Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity 5(2), 497–522 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    de Poyferré, T.: A priori estimates for water waves with emerging bottom. Arch. Ration. Mech. Anal. 232(2), 763–812 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    de Poyferré, T., Nguyen, Q.-H.: Strichartz estimates and local existence for the gravity-capillary waves with non-Lipschitz initial velocity. J. Differ. Equ. 261(1), 396–438 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    de Poyferré, T., Nguyen, Q.-H.: A paradifferential reduction for the gravity-capillary waves system at low regularity and applications. Bull. Soc. Math. Fr. 145(4), 643–710 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Deng, Y., Ionescu, A., Pausader, B., Pusateri, F.: Global solutions of the gravity-capillary water-wave system in three dimensions. Acta Math. 219(2), 213–402 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Dyachenko, A.I., Kuznetsov, E.A., Spector, M.D., Zakharov, V.E.: Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221(1–2), 73–79 (1996)

    Article  Google Scholar 

  26. 26.

    Fefferman, C., Ionescu, A.D., Lie, V.: On the absence of splash singularities in the case of two-fluid interfaces. Duke Math. J. 165(3), 417–462 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. (2) 175(2), 691–754 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Germain, P., Masmoudi, N., Shatah, J.: Global existence for capillary water waves. Commun. Pure Appl. Math. 68(4), 625–687 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Guo, Y., Tice, I.: Decay of viscous surface waves without surface tension. Anal. PDE 6(6), 1429–1533 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Harrop-Griffiths, B., Ifrim, M., Tataru, D.: The lifespan of small data solutions to the KP-I. Int. Math. Res. Not. 1, 1–28 (2017)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Hunter, J., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates II: global solutions. Bull. Soc. Math. Fr. 144(2), 369–394 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Ifrim, M., Tataru, D.: The lifespan of small data solutions in two dimensional capillary water waves. Arch. Ration. Mech. Anal. 225(3), 1279–1346 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Ifrim, M., Tataru, D.: No solitary waves in 2-d gravity and capillary waves in deep water. Nonlinearity 33(10), 5457–5477 (2020)

  35. 35.

    Iguchi, T.: A long wave approximation for capillary-gravity waves and an effect of the bottom. Commun. Part. Differ. Equ. 32(1–3), 37–85 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Ionescu, A.D., Pusateri, F.: Global solutions for the gravity water waves system in 2d. Invent. Math. 199(3), 653–804 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Ionescu, A.D., Pusateri, F.: Global regularity for 2D water waves with surface tension. Mem. Am. Math. Soc. 256(1227), v+124 (2018)

  38. 38.

    Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for quasi-linear Schrödinger equations. Invent. Math. 158(2), 343–388 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Lannes, D.: A stability criterion for two-fluid interfaces and applications. Arch. Ration. Mech. Anal. 208(2), 481–567 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Lannes, D.: Water Waves: Mathematical Analysis and Asymptotics. Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence (2013)

  41. 41.

    Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series. J. Lond. Math. Soc. 6(3), 230–233 (1931)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Marzuola, J., Metcalfe, J., Tataru, D.: Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. J. Funct. Anal. 255(6), 1497–1553 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Metcalfe, J., Tataru, D.: Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann. 353(4), 1183–1237 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Métivier, G.: Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems. Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 5. Edizioni della Normale, Pisa (2008)

  45. 45.

    Ming, M., Wang, C.: Water waves problem with surface tension in a corner domain II: the local well-posedness (2018). arXiv:1812.09911

  46. 46.

    Morawetz, C.S.: Time decay for the nonlinear Klein–Gordon equations. Proc. R. Soc. Ser. A 306, 291–296 (1968)

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Nalimov, V.I.: The Cauchy–Poisson problem. Dinamika Splošn. Sredy (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami) 254, 104–210 (1974)

  48. 48.

    Nguyen, H.Q.: A sharp Cauchy theory for the 2D gravity-capillary waves. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(7), 1793–1836 (2017)

  49. 49.

    Ozawa, T., Rogers, K.M.: A sharp bilinear estimate for the Klein-Gordon equation in \({\mathbb{R}}^{1+1}\). Int. Math. Res. Not. 5, 1367–1378 (2014)

    MATH  Article  MathSciNet  Google Scholar 

  50. 50.

    Planchon, F., Vega, L.: Bilinear virial identities and applications. Ann. Sci. Éc. Norm. Supér. (4) 42(2):261–290 (2009)

  51. 51.

    Rousset, F., Tzvetkov, N.: Transverse instability of the line solitary water-waves. Invent. Math. 184(2):257–388 (2011) [Prépublication (2009)]

  52. 52.

    Schneider, G., Wayne, C.E.: The rigorous approximation of long-wavelength capillary-gravity waves. Arch. Ration. Mech. Anal. 162(3), 247–285 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Schweizer, B.: On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6):753–781 (2005)

  54. 54.

    Shatah, J., Zeng, C.: A priori estimates for fluid interface problems. Commun. Pure Appl. Math. 61(6), 848–876 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Vega, L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102(4), 874–878 (1988)

    MATH  Google Scholar 

  56. 56.

    Wang, X.: Global regularity for the 3d finite depth capillary water waves (2016). arXiv:1611.05472

  57. 57.

    Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Wu, S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  61. 61.

    Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982)

    MathSciNet  MATH  Article  Google Scholar 

  62. 62.

    Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    Article  Google Scholar 

  63. 63.

    Zakharov, V.E.: Weakly nonlinear waves on the surface of an ideal finite depth fluid. In: Nonlinear Waves and Weak Turbulence. American Mathematical Society Translations: Series 2, vol. 182, pp. 167–197. American Mathematical Society, Providence (1998)

  64. 64.

    Zhu, H.: Control of three dimensional water waves. Arch. Ration. Mech. Anal. 236(2), 893–966 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  65. 65.

    Zhu, H.: Propagation of singularities for gravity-capillary water waves (2018). arXiv:1810.09339

Download references

Acknowledgements

T. Alazard was partially supported by the SingFlows project, Grant ANR-18-CE40-0027 of the French National Research Agency (ANR). M. Ifrim was partially was supported by a Luce Assistant Professorship, by the Sloan Foundation, and by an NSF CAREER Grant DMS-1845037. D. Tataru was partially supported by the NSF Grant DMS-1800294 as well as by a Simons Investigator grant from the Simons Foundation. The authors are also very grateful to the anonymous referee for carefully reading the manuscript and for many very helpful questions and comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Tataru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alazard, T., Ifrim, M. & Tataru, D. A Morawetz Inequality for Gravity-Capillary Water Waves at Low Bond Number. Water Waves 3, 429–472 (2021). https://doi.org/10.1007/s42286-020-00044-8

Download citation

Keywords

  • Water waves
  • Gravity/capillary
  • Local energy decay