Skip to main content
Log in

Poles and Branch Cuts in Free Surface Hydrodynamics

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

We consider the motion of ideal incompressible fluid with free surface. We analyzed the exact fluid dynamics through the time-dependent conformal mapping \(z=x+iy=z(w,t)\) of the lower complex half plane of the conformal variable w into the area occupied by fluid. We established the exact results on the existence vs. nonexistence of the pole and power law branch point solutions for \(1/z_w\) and the complex velocity. We also proved the nonexistence of the time-dependent rational solution of that problem for the second- and the first-order moving pole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baker, G., Caflisch, R.E., Siegel, M.: Singularity formation during Rayleigh–Taylor instability. J. Fluid Mech. 252, 51–78 (1993)

    Article  MathSciNet  Google Scholar 

  2. Baker, G.R., Meiron, D.I., Orszag, S.A.: Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477–501 (1982)

    Article  MathSciNet  Google Scholar 

  3. Baker, G.R., Shelley, M.J.: On the connection between thin vortex layers and vortex sheets. J. Fluid Mech. 215, 161–194 (1990)

    Article  MathSciNet  Google Scholar 

  4. Baker, G.R., Xie, C.: Singularities in the complex physical plane for deep water waves. J. Fluid Mech. 685, 83–116 (2011)

    Article  MathSciNet  Google Scholar 

  5. Caflisch, R., Orellana, O.: Singular solutions and Ill-Posedness for the evolution of vortex sheets. SIAM J. Math. Anal. 20(2), 293–307 (1989)

    Article  MathSciNet  Google Scholar 

  6. Caflisch, R., Orellana, O., Siegel, M.: A localized approximation method for vortical flows. SIAM J Appl Math 50(6), 1517–1532 (1990)

    Article  MathSciNet  Google Scholar 

  7. Caflisch, R.E., Ercolani, N., Hou, T.Y., Landis, Y.: Multi-valued solutions and branch point singularities for nonlinear hyperbolic or elliptic systems. Commun. Pure Appl. Math. 46(4), 453–499 (1993)

    Article  MathSciNet  Google Scholar 

  8. Chalikov, D., Sheinin, D.: Direct modeling of one-dimensional nonlinear potential waves. Adv. Fluid Mech 17, 207–258 (1998)

    Google Scholar 

  9. Chalikov, D., Sheinin, D.: Modeling of extreme waves based on equation of potential flow with a free surface. J. Comput. Phys. 210, 247–273 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chalikov, D.V.: Numerical Modeling of Sea Waves. Springer, Berlin (2016)

    Book  Google Scholar 

  11. Cowley, S.J., Baker, G.R., Tanveer, S.: On the formation of Moore curvature singularities in vortex sheets. J. Fluid Mech. 378, 233–267 (1999)

    Article  MathSciNet  Google Scholar 

  12. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993)

    Article  MathSciNet  Google Scholar 

  13. Dyachenko, A.I.: On the dynamics of an ideal fluid with a free surface. Dokl. Math. 63(1), 115–117 (2001)

    MathSciNet  Google Scholar 

  14. Dyachenko, A.I., Dyachenko, S.A., Lushnikov, P.M., Zakharov, V.E.: Dynamics of poles in 2D hydrodynamics with free surface: new constants of motion. J. Fluid Mech. 874, 891–925 (2019)

    Article  MathSciNet  Google Scholar 

  15. Dyachenko, A.I., Dyachenko, S.A., Lushnikov, P.M., Zakharov, V.E.: Short branch cut approximation in 2D Hydrodynamics with Free Surface. Submitted to Journal of Fluid Mechanics (2020). arXiv:2003.05085

  16. Dyachenko, A.I., Kuznetsov, E.A., Spector, M., Zakharov, V.E.: Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221, 73–79 (1996)

    Article  Google Scholar 

  17. Dyachenko, A.I., Lushnikov, P.M., Zakharov, V.E.: Non-canonical Hamiltonian structure and Poisson bracket for two-dimensional hydrodynamics with free surface. J. Fluid Mech. 869, 526–552 (2019)

    Article  MathSciNet  Google Scholar 

  18. Dyachenko, S.A., Lushnikov, P.M., Korotkevich, A.O.: The complex singularity of a Stokes wave. JETP Lett. 98(11), 675–679 (2013). https://doi.org/10.7868/S0370274X13230070

    Article  Google Scholar 

  19. Dyachenko, S.A., Lushnikov, P.M., Korotkevich, A.O.: Branch cuts of stokes wave on deep water. Part I: Numerical solution and Padé approximation. Stud. Appl. Math. 137, 419–472 (2016). https://doi.org/10.1111/sapm.12128

    Article  MathSciNet  MATH  Google Scholar 

  20. Grant, M.A.: The singularity at the crest of a finite amplitude progressive Stokes wave. J. Fluid Mech. 59(2), 257–262 (1973)

    Article  Google Scholar 

  21. Karabut, E.A., Zhuravleva, E.N.: Unsteady flows with a zero acceleration on the free boundary. J. Fluid Mech. 754, 308–331 (2014)

    Article  MathSciNet  Google Scholar 

  22. Krasny, R.: A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 65–93 (1986)

    Article  MathSciNet  Google Scholar 

  23. Kuznetsov, E., Spector, M., Zakharov, V.: Surface singularities of ideal fluid. Phys. Lett. A 182(4–6), 387–393 (1993). https://doi.org/10.1016/0375-9601(93)90413-T

    Article  MathSciNet  Google Scholar 

  24. Kuznetsov, E.A., Spector, M.D., Zakharov, V.E.: Formation of singularities on the free surface of an ideal fluid. Phys. Rev. E 49, 1283–1290 (1994). https://doi.org/10.1103/PhysRevE.49.1283

    Article  MathSciNet  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Third Edition, vol. 6. Pergamon, New York (1989)

    Google Scholar 

  26. Lushnikov, P.M.: Exactly integrable dynamics of interface between ideal fluid and light viscous fluid. Phys. Lett. A 329, 49–54 (2004)

    Article  Google Scholar 

  27. Lushnikov, P.M.: Structure and location of branch point singularities for Stokes waves on deep water. J. Fluid Mech. 800, 557–594 (2016)

    Article  MathSciNet  Google Scholar 

  28. Lushnikov, P.M., Dyachenko, S.A., Silantyev, D.A.: New conformal mapping for adaptive resolving of the complex singularities of Stokes wave. Proc. Roy. Soc. A 473, 20170198 (2017)

    Article  MathSciNet  Google Scholar 

  29. Lushnikov, P.M., Zubarev, N.M.: Exact solutions for nonlinear development of a Kelvin–Helmholtz instability for the counterflow of superfluid and normal components of Helium II. Phys. Rev. Lett. 120, 204504 (2018)

    Article  Google Scholar 

  30. Lushnikov, P.M., Zubarev, N.M.: Explosive development of the Kelvin–Helmholtz quantum instability on the He-II free surface. J. Exp. Theor. Phys. 129, 651–658 (2019)

    Article  Google Scholar 

  31. Meiron, D.I., Baker, G.R., Orszag, S.A.: Analytic structure of vortex sheet dynamics. Part 1. Kelvin–Helmholtz instability. J. Fluid Mech. 114, 283–298 (1982)

    Article  MathSciNet  Google Scholar 

  32. Meison, D., Orzag, S., Izraely, M.: Applications of numerical conformal mapping. J. Comput. Phys. 40, 345–360 (1981)

    Article  MathSciNet  Google Scholar 

  33. Moore, D.W.: The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 365(1720), 105–119 (1979). https://doi.org/10.1098/rspa.1979.0009

    Article  MathSciNet  MATH  Google Scholar 

  34. Ovsyannikov, L.V.: Dynamics of a fluid. M.A. Lavrent’ev Institute of Hydrodynamics Sib. Branch USSR Ac. Sci. 15, 104–125 (1973)

    Google Scholar 

  35. Shelley, M.J.: A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method. J. Fluid Mech. 244, 493–526 (1992). https://doi.org/10.1017/S0022112092003161

    Article  MathSciNet  MATH  Google Scholar 

  36. Stokes, G.G.: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc. 8, 441–455 (1847)

    Google Scholar 

  37. Stokes, G.G.: On the theory of oscillatory waves. Math. Phys. Papers 1, 197–229 (1880)

    Google Scholar 

  38. Tanveer, S.: Singularities in water waves and Rayleigh–Taylor instability. Proc. R. Soc. Lond. A 435, 137–158 (1991)

    Article  MathSciNet  Google Scholar 

  39. Tanveer, S.: Singularities in the classical Rayleigh–Taylor flow: formation and subsequent motion. Proc. R. Soc. Lond. A 441, 501–525 (1993)

    Article  MathSciNet  Google Scholar 

  40. Zakharov, V.E.: Integration of equations of deep fluids with free surface. Theor. Math. Phys. (2019)

  41. Zakharov, V.E., Dyachenko, A.I.: Free-surface hydrodynamics in the conformal variables. (2012). arXiv:1206.2046

  42. Zakharov, V.E., Dyachenko, A.I.: Are equations of a deep fluid with a free surface integrable? Presentation at The Russian-French Symposium “Mathematical Hydrodynamics”, Abstracts, LIH SB RAS & NSU, Novosibirsk. Russia 55 (2016)

  43. Zakharov, V.E., Dyachenko, A.I., Vasiliev, O.A.: New method for numerical simulation of nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech. B/Fluids 21, 283–291 (2002)

    Article  MathSciNet  Google Scholar 

  44. Zubarev, N.M.: Charged-surface instability development in liquid helium: an exact solution. JETP Lett. 71, 367–369 (2000)

    Article  Google Scholar 

  45. Zubarev, N.M.: Exact solutions of the equations of motion of liquid helium with a charged free surface. J. Exp. Theor. Phys. 94, 534–544 (2002)

    Article  Google Scholar 

  46. Zubarev, N.M.: Formation of singularities on the charged surface of a liquid-helium layer with a finite depth. J. Exp. Theor. Phys. 107, 668–678 (2008)

    Article  Google Scholar 

  47. Zubarev, N.M., Karabut, E.A.: Exact local solutions for the formation of singularities on the free surface of an ideal fluid. JETP Lett. 107, 412–417 (2018)

    Article  Google Scholar 

  48. Zubarev, N.M., Kuznetsov, E.A.: Singularity formation on a fluid interface during the Kelvin–Helmholtz instability development. J. Exp. Theor. Phys. 119, 169–178 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the support of the Russian Ministry of Science and Higher Education. The work of P.M.L. was supported by the National Science Foundation, Grant DMS-1814619. The work of V.E.Z. was supported by the National Science Foundation, Grant number DMS-1715323. The work of V.E.Z. described in Sect. 2 was supported by the Russian Science Foundation, Grant number 19-72-30028. Simulations were performed at the Texas Advanced Computing Center using the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF Grant ACI-1053575. P.M.L. would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the program “Complex analysis: techniques, applications and computations” where work on this paper was partially undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Lushnikov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lushnikov, P.M., Zakharov, V.E. Poles and Branch Cuts in Free Surface Hydrodynamics. Water Waves 3, 251–266 (2021). https://doi.org/10.1007/s42286-020-00040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-020-00040-y

Keywords

Navigation