Skip to main content
Log in

Synthesis and Characterization of Ce3+-Activated Orthovanadate Oxides M3(VO4)2 (M: Ni or Co) for Their Photocatalytic Performances

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This paper explores the synthesis of orthovanadate oxides M3(VO4)2 (M: Ni or Co) through the solution combustion route. The study delves into the structural and photocatalytic properties of these oxides, with a focus on the influence of cerium (Ce) doping. The results indicate that all synthesized samples exhibit a crystalline phase with an orthorhombic structure. Notably, the introduction of Ce3+ ions enhances the crystallization process, leading to an increase in the XRD peak intensity in the materials. Fourier transform infrared spectra reveal absorption bands between 550–400 cm−1, attributed to the stretching vibrations of the M–O bonds within the MO6 octahedral structures. The morphology of the orthovanadate oxides is characterized by numerous nearly spherical grains, some featuring faceted surfaces. The bandgap energy values for Ni3(VO4)2 and Co3(VO4)2 are initially measured at 2.20 and 1.86 eV, respectively, and increase to 2.42 and 2.05 eV, respectively, upon Ce3+ doping. Importantly, the inclusion of Ce3+ positively influences the photocatalytic performance of M3(VO4)2, suggesting potential applications in photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data reported in the manuscript will be made available upon reasonable request.

References

  1. Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2016) Size controllable synthesis of cobalt vanadate nanostructures with enhanced photocatalytic activity for the degradation of organic dyes. J Mol Catal A: Chem 425:31

    Article  CAS  Google Scholar 

  2. Luitel HN, Chand R, Torikai T, Yada M, Watari T (2013) Rare earth free Zn3V2O8 phosphor with controlled microstructure and its photocatalytic activity. Int J Photoenergy 1:1

    Article  Google Scholar 

  3. Mohameda RM, Harra FA (2020) Mechanistic investigation and photocatalytic activity of yttrium vanadate (YVO4) nanoparticles for organic pollutants mineralization. J Mater Res Technol 9:5666

    Article  Google Scholar 

  4. Sajid MM, Assaedi H, Zhai H (2023) Transition metal vanadates (MVO; M=Bi, Fe, Zn) synthesized by a hydrothermal method for efficient photocatalysis. J Mater Sci: Mater Electron 34:539

    CAS  Google Scholar 

  5. Nadolska M, Szkoda M, Trzciński K, Niedziałkowski P, Ryl J, Mielewczyk-Gryń A, Górnicka K, Prześniak-Welenc M (2022) Insight into potassium vanadates as visible-light-driven photocatalysts: Synthesis of V(IV)-rich nano/microstructures for the photodegradation of methylene blue. Inorg Chem 61:9433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akhoondi A, Feleni U, Bethi B, Idris AO, Hojjati-Najafabadi A (2021) Advances in metal-based vanadate compound photocatalysts: synthesis, properties and applications. Synth Sinter 1:151

    Article  Google Scholar 

  7. Gao X, Wang Z, Zhai X, Fu F, Li W (2015) The synthesize of lanthanide doped BiVO4 and its enhanced photocatalytic activity. J Mol Liq 211:25

    Article  CAS  Google Scholar 

  8. Rathore R, Ameta R, Ameta SC (2014) Role of nickel vanadate in photocatalytic degradation of azure A. J Curr Chem Pharm Sci 4:157

    CAS  Google Scholar 

  9. Ramavathu LN, Tumma BN, Justin P (2023) Photocatalytic degradation studies of malachite green dye by hydrothermally synthesized cobalt vanadate nanoparticles. Int J Nano Dimens 14:145

    CAS  Google Scholar 

  10. Sin J-C, Lam S-M, Lee K-T, Mohamed AR (2014) Preparation of rare earth-doped ZnO hierarchical micro/nanospheres and their enhanced photocatalytic activity under visible light irradiation. Ceram Int 40:5431

    Article  CAS  Google Scholar 

  11. Kumar R, Umar A, Kumara G, Akhtar MS, Wang Y, Kim SH (2015) Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram Int 41:7773

    Article  CAS  Google Scholar 

  12. Ahmad M, Ahmed E, Zafar F, Khalid NR, Niaz NA, Hafeez A, Ikram M, Khan MA, Zhanglian H (2015) Enhanced photocatalytic activity of Ce-doped ZnO nanopowders synthesized by combustion method. J Rare Earths 33:255

    Article  CAS  Google Scholar 

  13. Faisal M, Ismail AA, Ibrahim AA, Bouzud H, Al-Sayari SA (2013) Highly efficient photocatalyst based on Ce-doped ZnO nanorods: controllable synthesis and enhanced photocatalytic activity. Chem Eng J 229:225

    Article  CAS  Google Scholar 

  14. Ellappan P, Miranda LR (2014) Synthesis and characterization of cerium doped titanium catalyst for the degradation of nitrobenzene using visible light. Inter J Photoenergy 2014:756408

    Article  Google Scholar 

  15. Luo XL, Liu CJ, Chen MJ, Zhang S-S, Xu Y-H (2017) Electrochemical performance and enhanced photocatalytic activity of Ce-doped BiVO4 under visible light irradiation. Mater Res Bull 94:428

    Article  CAS  Google Scholar 

  16. Anwar N, Sajid MM, Iqbal MA, Zhai H, Ahmed M, Anwar B, Morsy K, Capangpangan RY, Alguno AC, Choi JR (2023) Synthesis and characterization of ferric vanadate nanorods for efficient electrochemical detection of ascorbic acid. ACS Omega 8:15450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mansha MS, Iqbal T, Farooq M, Riaz KN, Afsheen S, Sultan MS, Al-Zaqri N, Warad I, Masood A (2023) Facile hydrothermal synthesis of BiVO4 nanomaterials for degradation of industrial waste. Heliyon 9:e15978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nithya VD, Selvan RK, Sanjeeviraja C, Radheep DM, Arumugam S (2011) Synthesis and characterization of FeVO4 nanoparticles. Mater Res Bull 46:1654

    Article  CAS  Google Scholar 

  19. Shchelkanova M, Shekhtman G, Pershina S, Vovkotrub E (2021) Physico-chemical properties of NaV3O8 prepared by solid-state reaction. Materials 14:6976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pookmanee P, Kojinok S, Phanichphant S (2012) Bismuth vanadate (BiVO4) powder prepared by the sol-gel method. J Met Mater Miner 22:49

    CAS  Google Scholar 

  21. Rawat A, Clark L, Zhang C, Cavin J, Sangwan VK, Toth PS, Janáky C, Ananth R, Goldfine E, Bedzyk MJ, Weiss EA, Rondinelli JM, Hersam MC, Meletis EI, Rajeshwar K (2023) Solution combustion synthesis and characterization of magnesium copper vanadates. Inorg Chem 62:8903

    Article  CAS  PubMed  Google Scholar 

  22. Hao P, Zhu T, Su Q, Lin J, Cui R, Cao X, Wang Y, Pan A (2018) Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries. Front Chem 6:195

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saleh R, Djaja NF (2014) UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices Microstruct 74:217

    Article  CAS  Google Scholar 

  24. Patil KC, Hegde MS, Rattan T, Aruna ST (2008) Chemistry of nanocrystalline oxide materials combustion Synthesis. Properties and Applications, World Scientific, Singapore. Chapter 3

    Book  Google Scholar 

  25. Singh R, Dhoble SJ (2011) Combustion synthesis of Eu2+ and Dy3+ activated Sr3(VO4)2 phosphor for LEDs. Bull Mater Sci 34:557

    Article  CAS  Google Scholar 

  26. Alkaykh S, Mbarek A, Ali-Shattle EE (2020) Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6:e03663

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mil’vidsky MG, Osvensky VB, Shifrin SS (1981) Effect of doping on formation of dislocation structure in semiconductor crystals. J Cryst Growth 52:396

    Article  Google Scholar 

  28. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, New York

    Google Scholar 

  29. Sharma N, Sahay PP (2023) Effect of (Ce, Dy) co-doping on the microstructural, optical, and photoluminescence characteristics of solution combustion synthesized ZnO nanoparticles. Luminescence 38:196

    Article  CAS  PubMed  Google Scholar 

  30. Sharma N, Sahay PP (2023) Solution combustion synthesized Y2O3 nanoparticles and influence of Dy doping on their microstructural, optical, and photoluminescence characteristics. J Chin Chem Soc 70:58

    Article  CAS  Google Scholar 

  31. Kurzawa M, Blonska-Tabero A (2002) The synthesis and selected properties of new compounds: Mg3Fe4(VO4)6 and Zn3Fe4(VO4)6. Mater Res Bull 37:849

    Article  CAS  Google Scholar 

  32. Thiagarajan K, Theerthagiri J, Senthil RA, Arunachalam P, Madhavan J, Ghanem MA (2018) Synthesis of Ni3V2O8@graphene oxide nanocomposite as an efficient electrode material for supercapacitor applications. J Solid State Electrochem 22:527

    Article  CAS  Google Scholar 

  33. Belkhaoui C, Mzabi N, Smaoui H, Daniel P (2019) Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al+Mn) doping. Results Phys 12:1686

    Article  Google Scholar 

  34. Sajid MM, Shad NA, Khan SB, Zhang Z, Amin N (2019) Facile synthesis of Zinc vanadate Zn3(VO4)2 for highly efficient visible light assisted photocatalytic activity. J Alloys Compd 775:281

    Article  CAS  Google Scholar 

  35. Bandi VR, Grandhe BK, Jayasimhadri M, Jang K, Lee H-S, Yi S-S, Jeong J-H (2011) Photoluminescence and structural properties of Ca3Y(VO4)3: RE3+ (= Sm3+, Ho3+ and Tm3+) powder phosphors for tri-colors. J Cryst Growth 326:120

    Article  CAS  Google Scholar 

  36. Huang P, Yuan G, Wei T, Li J, Ashfold MNR (2018) Introducing carbon dots to moderate the blue emission from zinc vanadium oxide hydroxide hydrate nanoplates. RSC Adv 8:20686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Almotairy ARZ, Al-Maswari BM, Alkanad K, Lokanath NK, Radhika RT, Venkatesha BM (2023) Nickel vanadate nitrogen-doped carbon nanocomposites for high-performance supercapacitor electrode. Heliyon 9:e18496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamidi R, Ghasemi S, Hosseini SR (2020) Ultrasonic assisted synthesis of Ni3(VO4)2-reduced graphene oxide nanocomposite for potential use in electrochemical energy storage. Ultrason Sonochem 62:104869

    Article  CAS  PubMed  Google Scholar 

  39. Kumar R, Bhuvana T, Rai P, Sharma A (2018) Highly sensitive non-enzymatic glucose detection using 3-D Ni3(VO4)2 nanosheet arrays directly grown on Ni foam. J Electrochem Soc 165:B1

    Article  CAS  Google Scholar 

  40. Karmakara A, Srivastava SK (2019) In situ fabricated nickel vanadate/N-doped reduced graphene oxide hybrid as an advanced electrocatalyst in alkaline hydrogen evolution reaction. J Mater Chem A 7:15054

    Article  Google Scholar 

  41. Wang C, Fang D, Wang H, Cao Y, Xu W, Liu X, Luo Z, Li G, Jiang M, Xiong C (2016) Uniform nickel vanadate (Ni3V2O8) nanowire arrays organized by ultrathin nanosheets with enhanced lithium storage properties. Sci Rep 6:20826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prahasini P, Subadevi R, Wang F-M, Liu W-R, Sivakumar M (2016) A brannerite type cobalt vanadate conversion anode for lithium batteries. Ionics 22:347

    Article  CAS  Google Scholar 

  43. Fettkenhauer C, Wang X, Kailasam K, Antoniettia M, Dontsova D (2015) Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl2 eutectics. J Mater Chem A 3:21227

    Article  CAS  Google Scholar 

  44. Chuang TJ, Brundle CR, Rice DW (1976) Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf Sci 59:413

    Article  CAS  Google Scholar 

  45. Zhu SW, Li QG, Huttula M, Li TH, Cao W (2017) One-pot hydrothermal synthesis of BiVO4 microspheres with mixed crystal phase and Sm3+-doped BiVO4 for enhanced photocatalytic activity. J Mater Sci 52:1679

    Article  CAS  Google Scholar 

  46. Kumar R, Rai P, Sharma A (2016) 3D urchin-shaped Ni3(VO4)2 hollow nanospheres for high-performance asymmetric supercapacitor applications. J Mater Chem A 4:9822

    Article  CAS  Google Scholar 

  47. Chouchene B, Chaabane TB, Balan L, Girot E, Mozet K, Medjahdi G, Schneider R (2016) High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis. Beilstein J Nanotechnol 7:1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Calvache-Muñoz J, Prado FA, Tirado L, Daza-Gomez LC, Cuervo-Ochoa G, Calambas HL, Rodríguez-Páez JE (2019) Structural and optical properties of CeO2 nanoparticles synthesized by modified polymer complex method. J Inorg Organomet Polym Mater 29:813

    Article  Google Scholar 

  49. Makuła P, Pacia M, Macyk W (2018) How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV−Vis spectra. J Phys Chem Lett 9:6814

    Article  PubMed  Google Scholar 

  50. Sharma N, Sahay PP (2023) Solution combustion synthesis of Dy-doped ZnO nanoparticles: An investigation of their structural, optical and photoluminescence characteristics. J Lumin 257:119655

    Article  CAS  Google Scholar 

  51. Wang G, Ling Y, Li Y (2012) Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4:6682

    Article  CAS  PubMed  Google Scholar 

  52. Lv Y, Zhu Y, Zhu Y (2013) Enhanced photocatalytic performance for the BiPO4−x nanorod induced by surface oxygen vacancy. J Phys Chem C 117:18520

    Article  CAS  Google Scholar 

  53. Tan H, Zhao Z, Zhu W-b, Coker EN, Li B, Zheng M, Yu W, Fan H, Sun Z (2014) Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl Mater Interfaces 6:19184

    Article  CAS  PubMed  Google Scholar 

  54. Iqbal M, Fatima F, Javed T, Aanam A, Nazir A, Kanwal Q, Shehzadi Z, Khan MI, Nisar J, Abbas M, Naz S (2020) Microwave assisted synthesis of zinc vanadate nanoparticles and photocatalytic application. Mater Res Express 7:015070

    Article  CAS  Google Scholar 

  55. Roy JS, Dugas G, Morency S, Ribeiro SJL, Messaddeq Y (2020) Enhanced photocatalytic activity of silver vanadate nanobelts in concentrated sunlight delivered through optical fiber bundle coupled with solar concentrator. SN Appl Sci 2:185

    Article  CAS  Google Scholar 

  56. Sharma N, Sahay PP (2024) Structural, photoluminescence and photocatalytic performances of Ce3+ activated orthovanadate oxides M3(VO4)2 (M: Mg or Zn) synthesized by solution combustion route. Luminescence 39:e4627

    Article  CAS  Google Scholar 

  57. Chaisorn J, Wetchakun K, Phanichphant S, Wetchakun N (2015) A novel CeO2/InVO4 composite with high visible-light induced photocatalytic activity. Mater Lett 160:75

    Article  CAS  Google Scholar 

  58. Lamdab U, Wetchakun K, Phanichphant S, Kangwansupamonkon W, Wetchakun N (2016) InVO4-BiVO4 composite films with enhanced visible light performance for photodegradation of methylene blue. Catal Today 278:291

    Article  CAS  Google Scholar 

  59. Wetchakun N, Wanwaen P, Phanichphant S, Wetchakun K (2017) Influence of Cu doping on the visible-light-induced photocatalytic activity of InVO4. RSC Advances 7:13911

    Article  CAS  Google Scholar 

  60. You Z, Su Y, Yu Y, Wang H, Qin T, Zhang F, Shen Q, Yang H (2017) Preparation of g-C3N4 nanorod/InVO4 hollow sphere composite with enhanced visible-light photocatalytic activities. Appl Catal B: Environ 213:127

    Article  CAS  Google Scholar 

  61. Mitoraj D, Lamdab U, Kangwansupamonkon W, Pacia M, Macyk W, Wetchakun N, Beranek R (2018) Revisiting the problem of using methylene blue as a model pollutant in photocatalysis: The case of InVO4/BiVO4 composites. J Photochem Photobiol, A 366:103

    Article  CAS  Google Scholar 

  62. Wang Z, Wang J, Pan Y, Liu F, Lai Y, Li J, Jiang L (2020) Preparation and characterization of a novel and recyclable InVO4/ZnFe2O4 composite for methylene blue removal by adsorption and visible-light photocatalytic degradation. Appl Surf Sci 501:144006

    Article  CAS  Google Scholar 

  63. Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2016) Facile synthesis, characterization and optical properties of copper vanadate nanostructures for enhanced photocatalytic activity. J Mater Sci: Mater Electron 27:4871

    CAS  Google Scholar 

  64. Shifu C, Wei Z, Wei L, Huaye Z, Xiaoling Y, C. Yinghao C, (2009) Preparation, characterization and activity evaluation of p-n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation. J Hazard Mater 172:1415

    Article  PubMed  Google Scholar 

  65. Alanazi HS, Ahmad N, Alharthi FA (2021) Synthesis of Gd/N co-doped ZnO for enhanced UV-vis and direct solar-light-driven photocatalytic degradation. RSC Adv 11:10194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249:2447

    Article  CAS  PubMed  Google Scholar 

  67. Akram HA, Imran M, Latif S, Hatshan MR, Khan M, Abuhagr A, Alotaibi KM, Adil SF (2023) Bi3+/Ce3+ doped ZnO nanoparticles with enhanced photocatalytic and dielectric properties. Saudi Chem Soc 27:101567

    Article  Google Scholar 

  68. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their appreciation for the assistance and utilization of diverse characterization facilities throughout the duration of this study. These resources were generously provided by Centre for Interdisciplinary Research at Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India; Institute Instrumentation Centre at Indian Institute of Technology Roorkee, India; and Materials Research Centre at Malaviya National Institute of Technology Jaipur, India.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Nikita Sharma: Investigation, Methodology, Validation, Formal analysis, Data curation, Writing – original draft.

P.P. Sahay: Conceptualization, Validation, Formal analysis, Data curation, Supervision, Writing – review & editing.

Corresponding author

Correspondence to P. P. Sahay.

Ethics declarations

Ethical Approval

Not applicable.

Informed consent

Not applicable.

Conflict of Interest

Not applicable.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Sahay, P.P. Synthesis and Characterization of Ce3+-Activated Orthovanadate Oxides M3(VO4)2 (M: Ni or Co) for Their Photocatalytic Performances. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00975-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00975-6

Keywords

Navigation