Skip to main content

Advertisement

Log in

Preparation and photoelectrochemical characterization of the Ca2Co2O5, as novel photocatalyst for the H2 photo-production

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ca2Co2O5 was successfully synthesized from nitrate precursors. It crystallizes in the brownmillerite structure and exhibits semiconducting properties. The oxide was analyzed by X-ray diffraction (XRD), TG/DTA thermal analysis, scanning electron microscope (SEM), UV–visible spectroscopy, and electrochemical impedance spectroscopy (EIS). The XRD pattern of a powder calcined at 750 °C shows a single phase of Ca2Co2O5, in agreement with the TG/DTA plots. A direct gap of 0.72 eV was revealed from the diffuse reflectance spectroscopy. The electrical conductivity follows an exponential lawσ = σo exp{-0.10 eV/kT}. The photoelectrochemistry was undertaken and assessed for the hydrogen formation under visible light. The p-type conduction was demonstrated from the Mott–Schottky plot (C−2 vs. the applied potential); a flat band potential (Efb) of 0.07 VSCE and a hole density (ND) of 5.36 × 1019 cm−3 were determined in Na2SO4 (0.1 M) solution. Ca2Co2O5 was employed with success for H2 production under visible-light irradiation, since the conduction-band potential (-0.63 VSCE) is cathodically located with respect to the H2O/H2 couple, at neutral pH. A liberation rate of 22 µmol g−1 min−1 and a quantum yield of 0.18% were achieved under a light flux of 29 mW cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrogen Energy 44:540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200

    Article  CAS  Google Scholar 

  2. Kim Y, Coy E, Kim H et al (2021) Efficient photocatalytic production of hydrogen by exploiting the polydopamine-semiconductor interface. Appl Catal B Environ 280:119423. https://doi.org/10.1016/j.apcatb.2020.119423

    Article  CAS  Google Scholar 

  3. Ahmad H, Kamarudin SK, Minggu LJ, Kassim M (2015) Hydrogen from photo-catalytic water splitting process: A review. Renew Sustain Energy Rev 43:599–610

    Article  CAS  Google Scholar 

  4. Lang X, Gopalan S, Fu W, Ramakrishna S (2021) Photocatalytic water splitting utilizing electrospun semiconductors for solar hydrogen generation: Fabrication, Modification and Performance. Bull Chem Soc Jpn 94:8–20. https://doi.org/10.1246/BCSJ.20200175

    Article  CAS  Google Scholar 

  5. Saib F, Özel F, Sarılmaz A et al (2019) Photo-electrochemical properties of p-type AgCoO2 prepared by low temperature method. Mater Sci Semicond Process 91:174–180. https://doi.org/10.1016/j.mssp.2018.11.026

    Article  CAS  Google Scholar 

  6. Saib F, Bellal B, Trari M (2017) Preparation and characterization of the brownmillerite Sr2Co2O5 as novel photocatalyst in the hydrogen generation. Mater Sci Semicond Process 63:122–126. https://doi.org/10.1016/j.mssp.2016.12.044

    Article  CAS  Google Scholar 

  7. Bagtache R, Saib F, Abdmeziem K, Trari M (2019) A new hetero-junction p-CuO/Al2O3 for the H2 evolution under visible light. Int J Hydrogen Energy 44:22419–22424. https://doi.org/10.1016/j.ijhydene.2019.01.109

    Article  CAS  Google Scholar 

  8. Hamlaoui FZ, Naar N, Saib F, Trari M (2021) Transport and photo-electrochemical properties of PANI-SSA, a novel photocatalyst in the hydrogen production upon visible light. J Photochem Photobiol A Chem 407:113062. https://doi.org/10.1016/j.jphotochem.2020.113062

    Article  CAS  Google Scholar 

  9. Han J, Liu Z (2021) Optimization and modulation strategies of zinc oxide-based photoanodes for highly efficient photoelectrochemical water splitting. ACS Appl Energy Mater 4:1004–1013. https://doi.org/10.1021/acsaem.0c02985

    Article  CAS  Google Scholar 

  10. Salem KE, Mokhtar AM, Soliman I et al (2021) Ge-doped ZnO nanorods grown on FTO for photoelectrochemical water splitting with exceptional photoconversion efficiency. Int J Hydrogen Energy 46:209–220. https://doi.org/10.1016/j.ijhydene.2020.09.208

    Article  CAS  Google Scholar 

  11. Vinoth S, Rajaitha PM, Pandikumar A (2021) Modulating photoelectrochemical water splitting performance by constructing a type-II heterojunction between g-C3N4and BiOI. New J Chem 45:2010–2018. https://doi.org/10.1039/d0nj05384h

    Article  CAS  Google Scholar 

  12. Arifin K, Yunus RM, Minggu LJ, Kassim MB (2021) Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. Int J Hydrogen Energy 46:4998–5024. https://doi.org/10.1016/j.ijhydene.2020.11.063

    Article  CAS  Google Scholar 

  13. Arunachalam P, Al Mayouf AM (2018) Photoelectrochemical water splitting. Springer

    Google Scholar 

  14. Lee SS, Bai H, Liu Z, Sun DD (2012) Electrospun TiO2/SnO2 nanofibers with innovative structure and chemical properties for highly efficient photocatalytic H2 generation. Int J Hydrogen Energy 37:10575–10584. https://doi.org/10.1016/j.ijhydene.2012.04.098

    Article  CAS  Google Scholar 

  15. Saravanakumar K, Muthuraj V (2017) Fabrication of sphere like plasmonic Ag/SnO2 photocatalyst for the degradation of phenol. Optik (Stuttg) 131:754–763. https://doi.org/10.1016/j.ijleo.2016.11.127

    Article  CAS  Google Scholar 

  16. Hejazi S, Mohajernia S, Osuagwu B et al (2020) On the controlled loading of single platinum atoms as a Co‐catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv Mater 32:1908505. https://doi.org/10.1002/adma.201908505

    Article  CAS  Google Scholar 

  17. Nguyen NT, Ozkan S, Hejazi S et al (2019) Providing significantly enhanced photocatalytic H2 generation using porous PtPdAg alloy nanoparticles on spaced TiO2 nanotubes. Int J Hydrogen Energy 44:22962–22971. https://doi.org/10.1016/j.ijhydene.2019.06.200

    Article  CAS  Google Scholar 

  18. Reli M, Edelmannová M, Šihor M et al (2015) Photocatalytic H2 generation from aqueous ammonia solution using ZnO photocatalysts prepared by different methods. Int J Hydrogen Energy 40:8530–8538. https://doi.org/10.1016/j.ijhydene.2015.05.004

    Article  CAS  Google Scholar 

  19. Hezam A, Wang J, Drmosh QA et al (2021) Rational construction of plasmonic Z-scheme Ag-ZnO-CeO2 heterostructures for highly enhanced solar photocatalytic H2 evolution. Appl Surf Sci 541:148457. https://doi.org/10.1016/j.apsusc.2020.148457

    Article  CAS  Google Scholar 

  20. Sourisseau S, Louvain N, Bi W et al (2007) Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic-inorganic interface. Chem Mater 19:600–607. https://doi.org/10.1021/cm062380e

    Article  CAS  Google Scholar 

  21. Wang Q, Edalati K, Koganemaru Y et al (2020) Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion. J Mater Chem A 8:3643–3650. https://doi.org/10.1039/c9ta11839j

    Article  CAS  Google Scholar 

  22. Rekhila G, Bessekhouad Y, Trari M (2015) Hydrogen evolution under visible light over the solid solution NiFe2-xMnxO4 prepared by sol gel. Int J Hydrogen Energy 40:12611–12618. https://doi.org/10.1016/j.ijhydene.2015.07.109

    Article  CAS  Google Scholar 

  23. Sebai I, Salhi N, Rekhila G, Trari M (2017) Visible light induced H2 evolution on the spinel NiAl2O4 prepared by nitrate route. Int J Hydrogen Energy 42:26652–26658. https://doi.org/10.1016/j.ijhydene.2017.09.092

    Article  CAS  Google Scholar 

  24. Pei J, Chen G, Li X et al (2009) Molten salt synthesis and thermoelectric properties of Ca2Co2O5. Mater Lett 63:1459–1461. https://doi.org/10.1016/j.matlet.2009.03.034

    Article  CAS  Google Scholar 

  25. Lee H, Caliari F, Sampath S (2019) Thermoelectric properties of plasma sprayed of calcium cobaltite (Ca2Co2O5). J Eur Ceram Soc 39:3749–3755. https://doi.org/10.1016/j.jeurceramsoc.2019.05.008

    Article  CAS  Google Scholar 

  26. Li S, Funahashi R, Matsubara I et al (2000) Thermoelectric properties of oxides Ca2Co2O5 with Bi substitution. J Mater Sci Lett 19:1339–1341. https://doi.org/10.1023/A:1006740829820

    Article  CAS  Google Scholar 

  27. Zhang J, Zheng H, Malliakas CD et al (2014) Brownmillerite Ca2Co2O5: Synthesis, stability, and re-entrant single crystal to single crystal structural transitions. Chem Mater 26:7172–7182. https://doi.org/10.1021/cm503873x

    Article  CAS  Google Scholar 

  28. Qiu Z, Pei J, Chen G et al (2015) Electrospinning technique synthesis and electrical performances of one dimensional Ca2Co2O5 with hierarchical structure. Mater Lett 158:182–185. https://doi.org/10.1016/j.matlet.2015.06.014

    Article  CAS  Google Scholar 

  29. Zhang FP, Zhang GL, Qin GQ et al (2019) Electronic states and observed anisotropic band structure of Ca2Co2O5 type layered compound: A comprehensive study. Results Phys 15:102739. https://doi.org/10.1016/j.rinp.2019.102739

    Article  Google Scholar 

  30. Lan J, Zhan B, Lin YH et al (2013) Transport properties in Misfit-Layered Ca2Co2O 5 compound. Funct Mater Lett 6:2–5. https://doi.org/10.1142/S1793604713400018

    Article  CAS  Google Scholar 

  31. Waipan O, Vora-Ud A, Ratchasin A, Seetawan T (2012) First principle calculation of electronic structure of Ca 2Co2O5 thermoelectric compound oxide. Procedia Eng 32:1033–1036. https://doi.org/10.1016/j.proeng.2012.02.050

    Article  CAS  Google Scholar 

  32. Lan J, Lin YH, Li GJ et al (2010) High-temperature electrical transport behaviors of the layered Ca 2 Co2 O5 -based ceramics. Appl Phys Lett 96:7–10. https://doi.org/10.1063/1.3425891

    Article  CAS  Google Scholar 

  33. Chen SB, Wang HD, Wan W, Huang X (2013) Homogeneous precipitation synthesis and thermoelectric properties of Ca2Co2O5 ceramics. Energy Mater Mater Sci Eng Energy Syst 8:331–335. https://doi.org/10.1179/1743676113Y.0000000083

    Article  CAS  Google Scholar 

  34. Gazulla MF, Ventura MJ, Andreu C (2019) Characterization of cobalt oxides transformations with temperature at different atmospheres. Int J Chem Sci Res 17:312

    CAS  Google Scholar 

  35. Agilandeswari K, Ruban Kumar A (2014) Optical, electrical properties, characterization and synthesis of Ca2Co2O5 by sucrose assisted sol gel combustion method. Adv Powder Technol 25:904–909. https://doi.org/10.1016/j.apt.2014.01.006

    Article  CAS  Google Scholar 

  36. Nwaokafor P, Okeoma KB, Echendu OK et al (2021) X-ray diffraction analysis of a class of AlMgCu alloy using Williamson-Hall and Scherrer Methods. Metallogr Microstruct Anal. https://doi.org/10.1007/s13632-021-00792-0

    Article  Google Scholar 

  37. Karvaly B, Hevesi I (1971) Investigations on diffuse reflectance spectra of V2O5 powder. Zeitschrift fur Naturforsch - Sect A J Phys Sci 26:245–249. https://doi.org/10.1515/zna-1971-0211

    Article  CAS  Google Scholar 

  38. Kabouche S, Bellal B, Louafi Y, Trari M (2017) Synthesis and semiconducting properties of tin(II) sulfide: Application to photocatalytic degradation of Rhodamine B under sun light. Mater Chem Phys 195:229–235. https://doi.org/10.1016/j.matchemphys.2017.04.031

    Article  CAS  Google Scholar 

  39. Bozetine I, Saib F, Dib K et al (2018) Semiconducting properties of Ag 3 PO 4 and its application to Rhodamine degradation under solar light. Russ J Phys Chem A 92:2726–2732. https://doi.org/10.1134/S0036024418130058

    Article  CAS  Google Scholar 

  40. Wu M, Duan J, Feng K et al (2021) Seebeck coefficient controlled by magnetic field based on the P3HT/PCBM heterojunction device. Org Electron 90:106068. https://doi.org/10.1016/j.orgel.2021.106068

    Article  CAS  Google Scholar 

  41. Oliva FY, Avalle LB, Santos E, Cámara OR (2002) Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. J Photochem Photobiol A Chem 146:175–188. https://doi.org/10.1016/S1010-6030(01)00614-1

    Article  CAS  Google Scholar 

  42. Hojamberdiev M, Vargas R, Bhati VS et al (2021) Unraveling the photoelectrochemical behavior of Ni-modified ZnO and TiO2 thin films fabricated by RF magnetron sputtering. J Electroanal Chem 882. https://doi.org/10.1016/j.jelechem.2021.115009

  43. Ma Y, Pendlebury SR, Reynal A et al (2014) Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation. Chem Sci 5:2964–2973. https://doi.org/10.1039/c4sc00469h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to F. M. Laoui, Crystallography-Thermodynamics Laboratory, Faculty of Chemistry, USTHB, for his technical assistance in the thermal analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Saib or M. Trari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saib, F., Touahra, F., Azoudj, Y. et al. Preparation and photoelectrochemical characterization of the Ca2Co2O5, as novel photocatalyst for the H2 photo-production. J Solid State Electrochem 26, 607–619 (2022). https://doi.org/10.1007/s10008-022-05118-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05118-w

Keywords

Navigation