Skip to main content
Log in

A Review: Applications of Ionic Liquids in Medicinal Chemistry

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Ionic liquids are extraordinary compounds, with highly tunable and remarkable properties, formed of cations and anions, bonded via electrostatic forces. They are compounds of interest because of their properties, including low melting point, low vapor pressure, less volatility, thermal stability, and many others. They have been categorized into generations, out of which the third-generation ionic liquids (ILs) apprehend all the attention due to their biological properties. Ionic liquids have been known to be a highly cost-effective and straightforward method to form active compounds which have been used in various applications, both in medical and non-medical terms. Ionic liquids with the ions Imidazolium, Phosphonium, Pyrrolidinium, Pyridinium, and 1,3-benzodioxole have been discussed briefly elaborating their applications as catalysts (in coupling reactions such as Suzuki, Hantzsch, Sonogashira, and various hydrolysis reactions), alternative for the conventional organic solvents, Adsorbents, Heat transfer media and various Electroactive devices including lithium-ion batteries. This project pays more attention to the usefulness of Ionic Liquids as APIs (Active Pharmaceutical Ingredients) and their precursors, highlighting their bio-medical usage. The influence of certain ions on the biological properties of the API’s (single API ionic liquids) and some ions themselves acting as API, forming double API ionic liquids, highlighting the anti-microbial, anti-fungal, anti-pyretic, anti-cancerous, anti-inflammatory and other important biological properties of the ionic liquids. Overall, this project covers majority of everything present in the literature, related to understanding of the ionic liquids and their promise for a variety of applications in present and future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh SK, Savoy AW (2020) Ionic liquids synthesis and applications: an overview. J Mol Liq. Elsevier B.V.. https://doi.org/10.1016/j.molliq.2019.112038

  2. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 123–150. https://doi.org/10.1039/b006677j

  3. Shiflett MB, Scurto AM (2017) Ionic liquids: current state and future directions. ACS Symopisum Series, pp 1–13. https://pubs.acs.org/sharingguidelines

  4. Welton T (2018) Ionic liquids: a brief history. Biophys Rev. Springer Verlag 691–706. https://doi.org/10.1007/s12551-018-0419-2

  5. Lei Z, Chen B, Koo YM, Macfarlane DR (2017) Introduction: ionic liquids. Chem Rev. American Chemical Society 6633–6635. https://doi.org/10.1021/acs.chemrev.7b00246

  6. Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed (2008) 654–670. https://doi.org/10.1002/anie.200604951

  7. Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 2459–2477. https://doi.org/10.1016/j.ccr.2004.04.015

  8. Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev. American Chemical Society 7132–7189. https://doi.org/10.1021/acs.chemrev.6b00562

  9. Chatel G, Pereira JFB, Debbeti V, Wang H, Rogers RD (2014) Mixing ionic liquids-"Simple mixtures" or “Double salts”? Green Chem. Royal Society of Chemistry 2051–2083. https://doi.org/10.1039/c3gc41389f

  10. Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399. https://doi.org/10.1021/ja043451i

    Article  CAS  PubMed  Google Scholar 

  11. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JH, Rogers RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31(8):1429–1436. https://doi.org/10.1039/b706677p

    Article  CAS  Google Scholar 

  12. Hough WL, Rogers RD (2007) Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull Chem Soc Jpn 80(12):2262–2269. https://doi.org/10.1246/bcsj.80.2262

    Article  CAS  Google Scholar 

  13. Sehrawat H, Kumar N, Sood D, Kumar L, Tomar R, Chandra R (2021) Unraveling the interaction of an opium poppy alkaloid noscapine ionic liquid with human hemoglobin: biophysical and computational studies. J Mol Liq 338:116710. https://doi.org/10.1016/j.molliq.2021.116710

  14. Marrucho IM, Branco LC, Rebelo LPN (2014) Ionic liquids in pharmaceutical applications. Ann Rev Chem Biomol Eng. Annual Reviews Inc. 527–546. https://doi.org/10.1146/annurev-chembioeng-060713-040024

  15. Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Röder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications.Lenzinger Berichte 84:71–85

  16. Tao GH, He L, Sun N, Kou Y (2005) New generation ionic liquids: cations derived from amino acids. Chem Commun 28:3562–3564. https://doi.org/10.1039/b504256a

    Article  CAS  Google Scholar 

  17. Pernak J, Syguda A, Mirska I, Pernak A, Nawrot J, Pra̧dzyńska A, Griffin ST, Rogers RD (2007) Choline-derivative-based ionic liquids. Chemistry 13(24):6817–6827. https://doi.org/10.1002/chem.200700285

  18. Kumar V, Malhotra SV (2010) Ionic liquids as pharmaceutical salts: a historical perspective. perspective. ACS Symopisum Series, pp 1–12. https://pubs.acs.org/sharingguidelines

  19. Pinto PCAG, Saraiva MLMFS (2014) Ionic liquids: a pharmaceutical perspective

  20. Panić J, Tot A, Janković N, Drid P, Gadžurić S, Vraneš M (2020) Physicochemical and structural properties of lidocaine-based ionic liquids with anti-inflammatory anions. RSC Adv 10(24):14089–14098. https://doi.org/10.1039/c9ra08815f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu X, Zhu Q, Chen Z, Wu W, Lu Y, Qi J (2021) Ionic liquids as a useful tool for tailoring active pharmaceutical ingredients. J Control Release. Elsevier B.V. 268–283. https://doi.org/10.1016/j.jconrel.2021.08.032

  22. Frade RFM, Rosatella AA, Marques CS, Branco LC, Kulkarni PS, Mateus NMM, Afonso CAM, Duarte CMM (2009) Toxicological evaluation on human colon carcinoma cell line (CaCo-2) of ionic liquids based on imidazolium, guanidinium, ammonium, phosphonium, pyridinium and pyrrolidinium cations. Green Chem 11(10):1660–1665. https://doi.org/10.1039/b914284n

    Article  CAS  Google Scholar 

  23. Green MD, Long TE (2009) Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies. Polym Rev 291–314. https://doi.org/10.1080/15583720903288914

  24. Kore R, Srivastava R (2012) Synthesis of triethoxysilane imidazolium based ionic liquids and their application in the preparation of mesoporous ZSM-5. Catal Commun 18:11–15. https://doi.org/10.1016/j.catcom.2011.11.012

    Article  CAS  Google Scholar 

  25. Berg SP, Rovey JL (2013) Assessment of imidazole-based ionic liquids as dual-mode spacecraft propellants. J Propuls Power; American Institute of Aeronautics and Astronautics Inc. 29:339–351. https://doi.org/10.2514/1.B34341

  26. Wang Y, Li H, Han S (2006) A theoretical investigation of the interactions between water molecules and ionic liquids. J Phys Chem B 110(48):24646–24651. https://doi.org/10.1021/jp064134w

    Article  CAS  PubMed  Google Scholar 

  27. Vasilenko IV, Berezianko IA, Shiman DI, Kostjuk SV (2016) New catalysts for the synthesis of highly reactive polyisobutylene: chloroaluminate imidazole-based ionic liquids in the presence of diisopropyl ether. Polym Chem 7(36):5615–5619. https://doi.org/10.1039/c6py01325b

    Article  CAS  Google Scholar 

  28. Khalili Dermani A, Kowsari E, Ramezanzadeh B, Amini R (2019) Utilizing imidazole based ionic liquid as an environmentally friendly process for enhancement of the epoxy coating/graphene oxide composite corrosion resistance. J Ind Eng Chem 79:353–363. https://doi.org/10.1016/j.jiec.2019.07.010

    Article  CAS  Google Scholar 

  29. Morozov OS, Shachneva SS, Kepman AV (2019) Microporous PVDF ionic membranes for actuator applications prepared with imidazole-based Poly(Ionic) liquid as a pore forming material. IOP Conf Ser Mater Sci Eng; IOP Publishing Ltd, 683. https://doi.org/10.1088/1757-899X/683/1/012060

  30. Musiał M, Zorȩbski E, Malarz K, Kuczak M, Mrozek-Wilczkiewicz A, Jacquemin J, Dzida M (2021) Cytotoxicity of ionic liquids on normal human dermal fibroblasts in the context of their present and future applications. ACS Sustain Chem Eng 9(22):7649–7657. https://doi.org/10.1021/acssuschemeng.1c02277

    Article  CAS  Google Scholar 

  31. Crosthwaite JM, Aki SNVK, Maginn EJ, Brennecke JF (2004) Liquid phase behavior of imidazolium-based ionic liquids with alcohols. J Phys Chem B 108(16):5113–5119. https://doi.org/10.1021/jp037774x

    Article  CAS  Google Scholar 

  32. Abdi J, Hadipoor M, Esmaeili-Faraj SH, Vaferi B (2022) A modeling approach for estimating hydrogen sulfide solubility in fifteen different imidazole-based ionic liquids. Sci Rep 12(1). https://doi.org/10.1038/s41598-022-08304-y

  33. Wei J, Ren C, Zhang Y, Liang K, Fang D, Gao P (2023) A strategy of imidazole ionic liquids containing metallic element [Cneim][SbF6] (n = 4,5) as innovative media in sustainable heat transfer processes. Int Commun Heat Mass Transf 140. https://doi.org/10.1016/j.icheatmasstransfer.2022.106541

  34. Abe Y, Kude K, Hayase S, Kawatsura M, Tsunashima K, Itoh T (2008) Design of phosphonium ionic liquids for lipase-catalyzed transesterification. J Mol Catal B Enzym 51(3–4):81–85. https://doi.org/10.1016/j.molcatb.2007.11.010

    Article  CAS  Google Scholar 

  35. Khazaei A, Zolfigol MA, Faal-Rastegar T (2013) Ionic liquid tributyl (Carboxymethyl) phosphonium bromide as an efficient catalyst for the synthesis of Bis(Indolyl)Methanes under solvent-free conditions. J Chem Res 37(10):617–619. https://doi.org/10.3184/174751913X13787959859380

    Article  CAS  Google Scholar 

  36. Kalviri HA, Kerton FM (2011) Synthesis of Pd nanocrystals in phosphonium ionic liquids without any external reducing agents. Green Chem 13(3):681–686. https://doi.org/10.1039/c0gc00851f

    Article  CAS  Google Scholar 

  37. Yousfi M, Livi S, Duchet-Rumeau J (2014) Ionic liquids: a new way for the compatibilization of thermoplastic blends. Chem Eng J 255:513–524. https://doi.org/10.1016/j.cej.2014.06.080

    Article  CAS  Google Scholar 

  38. Vahdat SM, Zolfigol MA, Baghery S (2016) Straightforward hantzsch four- and three-component condensation in the presence of Triphenyl(Propyl-3-Sulfonyl)Phosphoniumtrifluoromethanesulfonate [TPPSP]OTf as a reusable and green mild ionic liquid catalyst. Appl Organomet Chem 30(5):311–317. https://doi.org/10.1002/aoc.3433

    Article  CAS  Google Scholar 

  39. Wang X, Zhu H, Girard GMA, Yunis R, Macfarlane DR, Mecerreyes D, Bhattacharyya AJ, Howlett PC, Forsyth M (2017) Preparation and characterization of gel polymer electrolytes using Poly(Ionic Liquids) and high lithium salt concentration ionic liquids. J Mater Chem A Mater 5(45):23844–23852. https://doi.org/10.1039/c7ta08233a

    Article  CAS  Google Scholar 

  40. Jalal A, Uzun A (2018) An ordinary nickel catalyst becomes completely selective for partial hydrogenation of 1,3-Butadiene when coated with Tributyl(Methyl)Phosphonium methyl sulfate. Appl Catal A Gen 562:321–326. https://doi.org/10.1016/j.apcata.2018.06.016

    Article  CAS  Google Scholar 

  41. Khazalpour S, Yarie M, Kianpour E, Amani A, Asadabadi S, Seyf JY, Rezaeivala M, Azizian S, Zolfigol MA (2020) Applications of phosphonium-based ionic liquids in chemical processes. J Iran Chem Soc. Springer 1775–1917. https://doi.org/10.1007/s13738-020-01901-6

  42. Gao H, Guo C, Xing J, Liu H (2012) Deep desulfurization of diesel oil with extraction using pyridinium-based ionic liquids. Sep Sci Technol 47(2):325–330. https://doi.org/10.1080/01496395.2011.620583

    Article  CAS  Google Scholar 

  43. Zeng S, Gao H, Zhang X, Dong H, Zhang X, Zhang S (2014) Efficient and reversible capture of SO2 by pyridinium-based ionic liquids. Chem Eng J 251:248–256. https://doi.org/10.1016/j.cej.2014.04.040

    Article  CAS  Google Scholar 

  44. Sabbaghan M, Shahvelayati AS, Madankar K (2015) CuO nanostructures: optical properties and morphology control by pyridinium-based ionic liquids. Spectrochim Acta A Mol Biomol Spectrosc 135:662–668. https://doi.org/10.1016/j.saa.2014.07.097

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Shang D, Zeng S, Wang Y, Zhang X, Zhang X, Liu J (2019) Enhanced CO2 capture by binary systems of pyridinium-based ionic liquids and porous ZIF-8 particles. J Chem Thermodyn 128:415–423. https://doi.org/10.1016/j.jct.2018.08.038

    Article  CAS  Google Scholar 

  46. Zang H, Lou J, Jiao S, Li H, Du Y, Wang J (2021) Valorization of chitin derived N-Acetyl-D-Glucosamine into high valuable N-Containing 3-Acetamido-5-acetylfuran using pyridinium-based ionic liquids. J Mol Liq 330. https://doi.org/10.1016/j.molliq.2021.115667

  47. Monaco S, Arangio AM, Soavi F, Mastragostino M, Paillard E, Passerini S (2012) An electrochemical study of oxygen reduction in pyrrolidinium-based ionic liquids for lithium/oxygen batteries. Electrochim Acta 83:94–104. https://doi.org/10.1016/j.electacta.2012.08.001

    Article  CAS  Google Scholar 

  48. Plylahan N, Kerner M, Lim DH, Matic A, Johansson P (2016) Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application. Electrochim Acta 216:24–34. https://doi.org/10.1016/j.electacta.2016.08.025

    Article  CAS  Google Scholar 

  49. Qin J, Guo J, Xu Q, Zheng Z, Mao H, Yan F (2017) Synthesis of pyrrolidinium-type poly(ionic liquid) membranes for antibacterial applications. ACS Appl Mater Interfaces 9(12):10504–10511. https://doi.org/10.1021/acsami.7b00387

    Article  CAS  PubMed  Google Scholar 

  50. Nandwani SK, Malek NI, Chakraborty M, Gupta S (2020) A Comprehensive study based on the application of different genre of surface-active ionic liquid and alkali combination systems in surfactant flooding. Energy Fuels 34(8):9411–9425. https://doi.org/10.1021/acs.energyfuels.0c01331

    Article  CAS  Google Scholar 

  51. Lv Z, Sun J, Zhou S, Bian Y, Chen H, Li Y, Lin MC (2020) Electrochemical and physical properties of imidazolium chloride ionic liquids with pyrrolidinium or piperidinium cation addition and their application in dual-ion batteries. Energy Technol 8(9). https://doi.org/10.1002/ente.202000432

  52. Musiał M, Malarz K, Mrozek-Wilczkiewicz A, Musiol R, Zorȩbski E, Dzida M (2017) Pyrrolidinium-based ionic liquids as sustainable media in heat-transfer processes. ACS Sustain Chem Eng 5(11):11024–11033. https://doi.org/10.1021/acssuschemeng.7b02918

    Article  CAS  Google Scholar 

  53. Wu TY, Liao JW, Chen CY (2014) Electrochemical synthesis, characterization and electrochromic properties of indan and 1,3-benzodioxole-based Poly(2,5-Dithienylpyrrole) derivatives. Electrochim Acta 150:245–262. https://doi.org/10.1016/j.electacta.2014.10.116

    Article  CAS  Google Scholar 

  54. Sehrawat H, Kumar N, Tomar R, Kumar L, Tomar V, Madan J, Dass SK, Chandra R (2020) Synthesis and characterization of novel 1,3-Benzodioxole tagged noscapine based ionic liquids with in silico and in vitro cytotoxicity analysis on HeLa cells. J Mol Liq 302. https://doi.org/10.1016/j.molliq.2020.112525

  55. Sangeeta, Sonaxi, Tomar R, Agrawal S, Sarkar A (2023) 1,3-Benzodioxole tagged lidocaine based ionic liquids as anticancer drug: synthesis, characterization and in silico study. ChemistrySelect 8(9). https://doi.org/10.1002/slct.202204535

  56. Shamshina JL, Barber PS, Rogers RD (2013) Ionic liquids in drug delivery. Expert Opin Drug Del 1367–1381. https://doi.org/10.1517/17425247.2013.808185

  57. Endres F (2010) Physical chemistry of ionic liquids. Phys Chem Chem Phys 12(8):1648–1648. https://doi.org/10.1039/c001176m

    Article  CAS  PubMed  Google Scholar 

  58. Moniruzzaman M, Goto M (2011) Ionic liquids: future solvents and reagents for pharmaceuticals. J Rev 44(6):370–381

  59. Bica K, Rodríguez H, Gurau G, Andreea Cojocaru O, Riisager A, Fehrmann R, Rogers RD (2012) Pharmaceutically active ionic liquids with solids handling, enhanced thermal stability, and fast release. Chem Commun 48(44):5422–5424. https://doi.org/10.1039/c2cc30959a

    Article  CAS  Google Scholar 

  60. Tourné-Péteilh C, Devoisselle JM, Vioux A, Judeinstein P, In M, Viau L (2011) Surfactant properties of ionic liquids containing short alkyl chain imidazolium cations and ibuprofenate anions. Phys Chem Chem Phys 13(34):15523–15529. https://doi.org/10.1039/c1cp21057b

    Article  CAS  PubMed  Google Scholar 

  61. Ferraz R, Branco LC, Marrucho IM, Araújo JMM, Rebelo LPN, Da Ponte MN, Prudêncio C, Noronha JP, Petrovski E (2012) Development of novel ionic liquids based on ampicillin. Medchemcomm 3(4):494–497. https://doi.org/10.1039/c2md00269h

    Article  CAS  Google Scholar 

  62. Ferraz R, Costa-Rodrigues J, Fernandes MH, Santos MM, Marrucho IM, Rebelo LPN, Prudêncio C, Noronha JP, Petrovski Ž, Branco LC (2015) Antitumor activity of ionic liquids based on ampicillin. ChemMedChem 10(9):1480–1483. https://doi.org/10.1002/cmdc.201500142

    Article  CAS  PubMed  Google Scholar 

  63. Miwa Y, Hamamoto H, Ishida T (2016) Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Eur J Pharm Biopharm 102:92–100. https://doi.org/10.1016/j.ejpb.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  64. Qamar S, Brown P, Ferguson S, Khan RA, Ismail B, Khan AR, Sayed M, Khan AM (2016) The interaction of a model active pharmaceutical with cationic surfactant and the subsequent design of drug based ionic liquid surfactants. J Colloid Interface Sci 481:117–124. https://doi.org/10.1016/j.jcis.2016.07.054

    Article  CAS  PubMed  Google Scholar 

  65. Kucherov FA, Egorova KS, Posvyatenko AV, Eremin DB, Ananikov VP (2017) Investigation of cytotoxic activity of mitoxantrone at the individual cell level by using ionic-liquid-tag-enhanced mass spectrometry. Anal Chem 89(24):13374–13381. https://doi.org/10.1021/acs.analchem.7b03568

    Article  CAS  PubMed  Google Scholar 

  66. Wiest J, Saedtler M, Balk A, Merget B, Widmer T, Bruhn H, Raccuglia M, Walid E, Picard F, Stopper H, Dekant W, Lühmann T, Sotriffer C, Galli B, Holzgrabe U, Meinel L (2017) Mapping the pharmaceutical design space by amorphous ionic liquid strategies. J Control Release 268:314–322. https://doi.org/10.1016/j.jconrel.2017.10.040

    Article  CAS  PubMed  Google Scholar 

  67. Williams HD, Ford L, Lim S, Han S, Baumann J, Sullivan H, Vodak D, Igonin A, Benameur H, Pouton CW, Scammells PJ, Porter CJH (2018) Transformation of biopharmaceutical classification system class I and III drugs into ionic liquids and lipophilic salts for enhanced developability using lipid formulations. J Pharm Sci 107(1):203–216. https://doi.org/10.1016/j.xphs.2017.05.019

    Article  CAS  PubMed  Google Scholar 

  68. Dasari S, Mallik BS (2020) Solubility and solvation free energy of a cardiovascular drug, LASSBio-294, in ionic liquids: a computational study. J Mol Liq 301. https://doi.org/10.1016/j.molliq.2020.112449

  69. Handa M, Almalki WH, Shukla R, Afzal O, Altamimi ASA, Beg S, Rahman M (2022) Active Pharmaceutical Ingredients (APIs) in ionic liquids: an effective approach for api physiochemical parameter optimization. Drug Discov Today. Elsevier Ltd 2415–2424. https://doi.org/10.1016/j.drudis.2022.06.003

  70. Stoimenovski J, MacFarlane DR, Bica K, Rogers RD (2010) Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm Res 521–526. https://doi.org/10.1007/s11095-009-0030-0

  71. Ferraz R, Branco LC, Prudêncio C, Noronha JP, Petrovski Ž (2011) Ionic liquids as active pharmaceutical ingredients. ChemMedChem 6(6):975–985. https://doi.org/10.1002/cmdc.201100082

    Article  CAS  PubMed  Google Scholar 

  72. Stoimenovski J, Dean PM, Izgorodina EI, MacFarlane DR (2012) Protic pharmaceutical ionic liquids and solids: aspects of protonics. Faraday Discuss 154:335–352. https://doi.org/10.1039/c1fd00071c

    Article  CAS  PubMed  Google Scholar 

  73. Pinto PCAG, Ribeiro DMGP, Azevedo AMO, Dela Justina V, Cunha E, Bica K, Vasiloiu M, Reis S, Saraiva MLMFS (2013) Active pharmaceutical ingredients based on salicylate ionic liquids: insights into the evaluation of pharmaceutical profiles. New J Chem 37(12):4095–4102. https://doi.org/10.1039/c3nj00731f

    Article  CAS  Google Scholar 

  74. Frizzo CP, Wust K, Tier AZ, Beck TS, Rodrigues LV, Vaucher RA, Bolzan LP, Terra S, Soares F, Martins MAP (2016) Novel Ibuprofenate- and docusate-based ionic liquids: emergence of antimicrobial activity. RSC Adv 6(102):100476–100486. https://doi.org/10.1039/c6ra22237d

    Article  CAS  Google Scholar 

  75. Bender CR, Salbego PRS, Wust K, Farias CAA, Beck TS, Machado G, Vaucher RA, Martins MAP, Frizzo CP (2018) Interaction of pharmaceutical ionic liquids with TiO2 in anatase and rutile phase. J Mol Liq 269:912–919. https://doi.org/10.1016/j.molliq.2018.08.066

    Article  CAS  Google Scholar 

  76. Abednejad A, Ghaee A, Morais ES, Sharma M, Neves BM, Freire MG, Nourmohammadi J, Mehrizi AA (2019) Polyvinylidene fluoride-hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior. Acta Biomater 100:142–157. https://doi.org/10.1016/j.actbio.2019.10.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Netaji Subhas University of Technology, MSBU. The author would like to thank the above-mentioned Universities for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjana Sarkar or Ravi Tomar.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Baweja, K., Kumar, C. et al. A Review: Applications of Ionic Liquids in Medicinal Chemistry. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00960-z

Keywords

Navigation