Skip to main content
Log in

A Facile Synthesis of MgO Decorated Spinel Magnetic Nanoparticles Using Terminalia catappa Leaf Extract: Its Application in EBT Dye Removal

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Proposed work describes a simple technique for production of bio-synthesized Magnesium oxide modified magnetite nanoparticles (MgO@MNPs) for the removal of Eriochrome black T (EBT) dyes using Almond (Terminalia catappa) leaf extract (ALE). The adsorption conditions were tuned for the maximal removal of EBT dyes by altering many physicochemical factors, including pH, initial concentration of EBT dye, MgO@MNPs dosage, contact time, and reaction temperature. The Langmuir model was found to be suitable for describing the adsorption process, which had a high adsorption capacity (qmax) of 208.33 mg/g for removing the EBT. The kinetic and thermodynamic aspects of the process were also evaluated, showing that it followed a pseudo-second-order model and was exothermic and spontaneous. Desorption was effective using NaOH, and the adsorbent could be reused for at least seven cycles with at least 96% removal percentage of EBT dye. A comparison table was provided, demonstrating the effectiveness of this study, which presents a promising approach for practical applications in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 2
Fig. 16

Similar content being viewed by others

Data Availability

Authors can confirm that all relevant data are included in the article.

References

  1. Qian H, Wang J, Yan L (2020) Synthesis of lignin-poly(N-methylaniline)-reduced graphene oxide hydrogel for organic dye and lead ions removal. J Bioresour Bioprod 5:204–210. https://doi.org/10.1016/j.jobab.2020.07.006

    Article  CAS  Google Scholar 

  2. Karimi-Maleh H, Ayati A, Ghanbari S et al (2021) Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: a comprehensive review. J Mol Liq 329:115062–115062. https://doi.org/10.1016/j.molliq.2020.115062

    Article  CAS  Google Scholar 

  3. Karimi-Maleh H, Ranjbari S, Tanhaei B et al (2021) Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. Environ Res 195:110809–110809. https://doi.org/10.1016/j.envres.2021.110809

    Article  CAS  PubMed  Google Scholar 

  4. Karimi F, Ayati A, Tanhaei B et al (2022) Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; a powerful approach in water treatment. Environ Res 203:111753–111753. https://doi.org/10.1016/j.envres.2021.111753

    Article  CAS  PubMed  Google Scholar 

  5. Chen S, Jiang S-F, Jiang H (2020) A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications. J Bioresour Bioprod 5:238–247. https://doi.org/10.1016/j.jobab.2020.10.002

    Article  CAS  Google Scholar 

  6. Shi Z, Qin S, Zhang C et al (2020) The impacts of water pollution emissions on public health in 30 provinces of China. Healthcare 8:119–119. https://doi.org/10.3390/healthcare8020119

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sousa J, Ribeiro AR, Barbosa MO et al (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 344:146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058

    Article  CAS  PubMed  Google Scholar 

  8. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2019) Environ Sci Technol 47:6

    Google Scholar 

  9. Imran Kabir Md, Daly E, Maggi F (2014) A review of ion and metal pollutants in urban green water infrastructures. Sci Total Environ 470–471:695–706. https://doi.org/10.1016/j.scitotenv.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  10. Hassaan MA, El Nemr A (2017) Advanced oxidation processes for textile wastewater treatment. Int J Photochem Photobiol 2(3):85–93. https://doi.org/10.11648/j.ijpp.20170203.13

  11. Benkhaya b, El Harfi S, El Harfi A (2017) Classifications, properties and applications of textile dyes: a review. Appl J Environ Eng Sci 3. https://doi.org/10.48422/imist.prsm/ajees-v3i3.9681

  12. Hassaan MA, El Nemr A, Hassaan A (2017) Health and environmental impacts of dyes: mini review. Am J Environ Sci Eng 1(3):64–67. https://doi.org/10.11648/j.ajese.20170103.11

  13. Jadhav SA, Garud HB, Patil AH et al (2019) Recent advancements in silica nanoparticles-based technologies for removal of dyes from water. Colloid Interface Sci Commun 30:100181–100181. https://doi.org/10.1016/j.colcom.2019.100181

    Article  CAS  Google Scholar 

  14. Al-Sakkaf Basem Mohammed, Nasreen Sadia, Ejaz N (2020) Degradation pattern of textile effluent by using Bio and Sono chemical reactor. J Chem 2020:1–13. https://doi.org/10.1155/2020/8965627

    Article  CAS  Google Scholar 

  15. Kansal Sushil Kumar, Sood S, Umar A, Mehta SK (2013) Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J Alloys Compd 581:392–397. https://doi.org/10.1016/j.jallcom.2013.07.069

    Article  CAS  Google Scholar 

  16. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262. https://doi.org/10.1016/j.nano.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  17. Hussain I, Singh N, Singh Arun Kumar et al (2015) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560. https://doi.org/10.1007/s10529-015-2026-7

    Article  CAS  PubMed  Google Scholar 

  18. Abdelghany TM, Aisha Abboud M et al (2017) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. J Bionanosci 8:5–16. https://doi.org/10.1007/s12668-017-0413-3

    Article  Google Scholar 

  19. Baruwati Babita, Polshettiwar Vivek, Varma RS (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11:926–926. https://doi.org/10.1039/b902184a

    Article  CAS  Google Scholar 

  20. Guo Li Xin, Ma X, Xie X et al (2019) Preparation of dual-dummy-template molecularly imprinted polymers coated magnetic graphene oxide for separation and enrichment of phthalate esters in water. Chem Eng J 361:245–255. https://doi.org/10.1016/j.cej.2018.12.076

    Article  CAS  Google Scholar 

  21. Li C, Ma X, Zhang X et al (2016) Magnetic molecularly imprinted polymer nanoparticles-based solid-phase extraction coupled with gas chromatography–mass spectrometry for selective determination of trace di-(2-ethylhexyl) phthalate in water samples. Anal Bioanal Chem 408:7857–7864. https://doi.org/10.1007/s00216-016-9889-x

    Article  CAS  PubMed  Google Scholar 

  22. Özcan Nermin, Medetalibeyoğlu Hilal, Akyıldırım Onur et al (2020) Electrochemical detection of amyloid-β protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer. Mater Today Commun. 23:101097–101097. https://doi.org/10.1016/j.mtcomm.2020.101097

    Article  CAS  Google Scholar 

  23. Ghazaghi Mehri, Mousavi Hassan Zavvar, Shirkhanloo Hamid, Rashidi A (2017) Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid. Anal Chim Acta 951:78–88. https://doi.org/10.1016/j.aca.2016.11.034

    Article  CAS  PubMed  Google Scholar 

  24. Bahrani S, Daneshfar A (2018) Fabrication of size-controlled nanocomposite based on zirconium alkoxide for enrichment of Gallic acid in biological and herbal tea samples. J Chromatogr B Biomed Sci Appl 1087–1088:14–22. https://doi.org/10.1016/j.jchromb.2018.04.021

    Article  CAS  Google Scholar 

  25. Yu C, Gou L, Zhou X et al (2011) Chitosan–Fe3O4 nanocomposite based electrochemical sensors for the determination of bisphenol A. Electrochim Acta 56:9056–9063. https://doi.org/10.1016/j.electacta.2011.05.135

    Article  CAS  Google Scholar 

  26. Khan MY, Mangrich AS, Schultz J et al (2015) Green chemistry preparation of superparamagnetic nanoparticles containing Fe3O4 cores in biochar. J Anal Appl Pyrolysis 116:42–48. https://doi.org/10.1016/j.jaap.2015.10.008

  27. Liu W, Shen Y, Zhang W (2010) Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322:1828–1833. https://doi.org/10.1016/j.jmmm.2009.12.035

    Article  CAS  Google Scholar 

  28. Prasad C, Krishna Murthy P, Hari Krishna R et al (2017) Bio-inspired green synthesis of RGO/Fe 3 O 4 magnetic nanoparticles using Murrayakoenigii leaves extract and its application for removal of Pb(II) from aqueous solution. J Environ Chem Eng 5:4374–4380. https://doi.org/10.1016/j.jece.2017.07.026

    Article  CAS  Google Scholar 

  29. Prasad C, Karlapudi S, Seelolla G, Venkateswarlu P (2017) Bio inspired green synthesis of Ni/Fe3O4 magnetic nanoparticles using Moringa oleifera leaves extract: a magnetically recoverable catalyst for organic dye degradation in aqueous solution. J Alloys Compd. 700:252–258. https://doi.org/10.1016/j.jallcom.2016.12.363

  30. Mohammad Sajadi S, Nasrollahzadeh Mahmoud, Maham M (2016) Aqueous extract from seeds of Silybum marianum L. as a green material for preparation of the Cu/Fe3O4 nanoparticles: a magnetically recoverable and reusable catalyst for the reduction of nitroarenes. J Colloid Interface Sci 469:93–98. https://doi.org/10.1016/j.jcis.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  31. Jolivet J, Chanéac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 477–483. https://doi.org/10.1039/b304532n

  32. Hariani PL, Faizal M, Setiabudidaya D (2013) Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int J Environ Sci Dev 4(3):336. https://doi.org/10.7763/ijesd.2013.V4.366

    Article  CAS  Google Scholar 

  33. Yang L, Tian J, Meng J et al (2018) Modification and characterization of Fe3O4 nanoparticles for use in adsorption of alkaloids. Molecules 23:562–562. https://doi.org/10.3390/molecules23030562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kharissova OV, Dias R, Kharisov BI (2015) Magnetic adsorbents based on micro- and nano-structured materials. RSC Adv 5:6695–6719. https://doi.org/10.1039/c4ra11423j

    Article  CAS  Google Scholar 

  35. Tamjidi Sajad, Esmaeili H (2019) Chemically modified CaO/Fe3O4 nanocomposite by sodium dodecyl sulfate for Cr(III) removal from water. Chem Eng Technol 42:607–616. https://doi.org/10.1002/ceat.201800488

    Article  CAS  Google Scholar 

  36. Li J, Jiang B, Liu Y et al (2017) Preparation and adsorption properties of magnetic chitosan composite adsorbent for Cu 2+ removal. J Cleaner Prod 158:51–58. https://doi.org/10.1016/j.jclepro.2017.04.156

    Article  CAS  Google Scholar 

  37. Ahmadi F, Esmaeili H (2018) Chemically modified bentonite/Fe3O4 nanocomposite for Pb (II), Cd (II), and Ni (II) removal from synthetic wastewater. Desalin Water Treat 110:154–167. https://doi.org/10.5004/dwt.2018.22228

    Article  CAS  Google Scholar 

  38. Forouzandeh-Malati M, Ganjali F, Zamiri E, Zarei-Shokat S, Jalali F, Padervand M, ... Maleki A (2022) Efficient photodegradation of eriochrome black-T by a trimetallic magnetic self-synthesized nanophotocatalyst based on Zn/Au/Fe-embedded poly (vinyl alcohol). Langmuir 38(45):13728–13743. https://doi.org/10.1021/acs.langmuir.2c01822

  39. Deb A, Debnath A, Saha B (2021) Sono-assisted enhanced adsorption of eriochrome Black-T dye onto a novel polymeric nanocomposite: kinetic, isotherm, and response surface methodology optimization. J Dispersion Sci Technol 42(11):1579–1592. https://doi.org/10.1080/01932691.2020.1775093

    Article  CAS  Google Scholar 

  40. Sahoo Jitendra Kumar, Konar M, Rath J et al (2019) Magnetic hydroxyapatite nanocomposite: impact on eriochrome black-T removal and antibacterial activity. J Mol Liq 294:111596–111596. https://doi.org/10.1016/j.molliq.2019.111596

    Article  CAS  Google Scholar 

  41. Tamaddon Fatemeh, Ahmadi-AhmadAbadi Ehsan, Khoje-neamah Ehsan (2022) Nano-carboxymethylcellulose, polyacrylamide, and γ-Fe2O3-SO3H cross-linked to a hydrophobic linker: An organic-inorganic hydrogel for adsorptive removal of dyes. J Mol Struct 1270:133872–133872. https://doi.org/10.1016/j.molstruc.2022.133872

    Article  CAS  Google Scholar 

  42. Ghidan AY, Al-Antary TM, Awwad AM (2018) Green synthesis of magnesium oxide (MgONPs) nanoparticles using Chamaemel umnobileflowers extract: Effect on Green Peach Aphid. In The 3rd International Nanotechnology Conference and Expo. Italy. Madridge J Nanotechnol Nanosci 3:67 https://doi.org/10.18689/2638-2075.a3.002

  43. Oyeleye SI, Adebayo AA, Ogunsuyi OB, Dada FA, Oboh G (2017) Phenolic profile and enzyme inhibitory activities of almond (Terminalia catappa) leaf and Stem bark. Int J Food Prop 20(sup3):S2810–S2821. https://doi.org/10.1080/10942912.2017.1375945

    Article  CAS  Google Scholar 

  44. Lin CC, Hsu YF, Lin TC (2001) Antioxidant and free radical scavenging effects of the tannins of Terminalia catappa L. Anticancer Res. 21(1A):237–243

    CAS  PubMed  Google Scholar 

  45. Cao Z, Wang Z, Shang Z, Jiancheng Zhao (2017) Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics. PLoS ONE 12:e0172359–e0172359. https://doi.org/10.1371/journal.pone.0172359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shakoor S, Nasar A (2019) Utilization of Cucumis sativus peel as an eco-friendly biosorbent for the confiscation of crystal violet dye from artificially contaminated wastewater. Anal Chem Lett 9(1):1–19. https://doi.org/10.1080/22297928.2019.1588162

    Article  CAS  Google Scholar 

  47. Alswat AA, Ahmad Mansor Bin, Saleh TA (2017) Preparation and characterization of zeolite\zinc oxide-copper oxide nanocomposite: antibacterial activities. Colloid Interface Sci Commun 16:19–24. https://doi.org/10.1016/j.colcom.2016.12.003

    Article  CAS  Google Scholar 

  48. Rezaei M, Khajenoori Majid, Nematollahi Behzad (2011) Synthesis of high surface area nanocrystalline MgO by pluronic P123 triblock copolymer surfactant. Powder Technol. 205:112–116. https://doi.org/10.1016/j.powtec.2010.09.001

    Article  CAS  Google Scholar 

  49. Song G, Ma S, Tang G, Wang X (2010) Ultrasonic-assisted synthesis of hydrophobic magnesium hydroxide nanoparticles. Colloids Surf A 364:99–104. https://doi.org/10.1016/j.colsurfa.2010.04.043

  50. Tamilselvi P, Yelilarasi A, Hema M, Anbarasan R (2013) Synthesis of hierarchical structured MgO by sol-gel method. Nano Bull 2(1):130106. ISSN 2159-0427/130106/05/$60.00

  51. Кyмap Aшoк, Kumar J (2008) On the synthesis and optical absorption studies of nano-size magnesium oxide powder. J Phys Chem Solids 69:2764–2772. https://doi.org/10.1016/j.jpcs.2008.06.143

    Article  CAS  Google Scholar 

  52. Veisi Hojat, Ghorbani M, Hemmati S (2019) Sonochemical in situ immobilization of Pd nanoparticles on green tea extract coated Fe3O4 nanoparticles: an efficient and magnetically recyclable nanocatalyst for synthesis of biphenyl compounds under ultrasound irradiations. Mater Sci Eng 98:584–593. https://doi.org/10.1016/j.msec.2019.01.009

    Article  CAS  Google Scholar 

  53. Verloop AJ (2016) Oligomerization and hydroxylation of green tea catechins by oxidative enzymes (Doctoral dissertation, Wageningen University and Research). ISBN 978-94-6257-777-0

  54. Saranya T, Parasuraman K, Anbarasu M, Balamurugan K (2015) XRD, FT-IR and SEM study of magnetite (Fe3O4) nanoparticles prepared by hydrothermal method. Nano Vision 5(4–6):149–154

    Google Scholar 

  55. Jalil WBF, Pentón-Madrigal A, Mello A et al (2017) Low toxicity superparamagnetic magnetite nanoparticles: one-pot facile green synthesis for biological applications. Mater Sci Eng 78:457–466. https://doi.org/10.1016/j.msec.2017.04.066

    Article  CAS  Google Scholar 

  56. Xu H, Wang H, Song Z et al (2004) Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium-ion batteries. Electrochim Acta 49:349–353. https://doi.org/10.1016/j.electacta.2003.08.017

    Article  CAS  Google Scholar 

  57. Izadiyan Zahra, Shameli Kamyar, Miyake M et al (2019) Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect. Mater Sci Eng 96:51–57. https://doi.org/10.1016/j.msec.2018.11.008

    Article  CAS  Google Scholar 

  58. Rizk HE, El-Hefny NE (2020) Synthesis and characterization of magnetite nanoparticles from polyol medium for sorption and selective separation of Pd(II) from aqueous solution. J Alloys Compd 812:152041–152041. https://doi.org/10.1016/j.jallcom.2019.152041

    Article  CAS  Google Scholar 

  59. Morel MJ, Martínez F, Mosquera E (2013) Synthesis and characterization of magnetite nanoparticles from mineral magnetite. J Magn Magn Mater 343:76–81. https://doi.org/10.1016/j.jmmm.2013.04.075

    Article  CAS  Google Scholar 

  60. Somanathan T, Mohana Krishna Vemula, Saravanan Vadivelu et al (2016) MgO nanoparticles for effective uptake and release of doxorubicin drug: pH sensitive controlled drug release. J Nanosci Nanotechnol 16:9421–9431. https://doi.org/10.1166/jnn.2016.12164

    Article  CAS  Google Scholar 

  61. Esmaeili H, Foroutan R (2018) Adsorptive behavior of methylene blue onto sawdust of sour lemon, date palm, and eucalyptus as agricultural wastes. J Dispersion Sci Technol. https://doi.org/10.1080/01932691.2018.1489828

    Article  Google Scholar 

  62. Abshirini Y, Esmaeili H, Foroutan R (2019) Enhancement removal of Cr (VI) ion using magnetically modified MgO nanoparticles. Mater Res Exp 6(12):125513. https://doi.org/10.1088/2053-1591/ab56ea

    Article  CAS  Google Scholar 

  63. Magdalena Aroldo Geraldo, Silva IMB, Fernando R et al (2018) EDTA-functionalized Fe3O4 nanoparticles. J Phys Chem Solids 113:5–10. https://doi.org/10.1016/j.jpcs.2017.10.002

    Article  CAS  Google Scholar 

  64. Karimifard Shahab, Reza M (2018) Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci Total Environ 640–641:772–797. https://doi.org/10.1016/j.scitotenv.2018.05.355

    Article  CAS  PubMed  Google Scholar 

  65. Stan M, Lung I, Soran M-L et al (2017) Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts. Process Saf Environ Prot 107:357–372. https://doi.org/10.1016/j.psep.2017.03.003

    Article  CAS  Google Scholar 

  66. Pudukudy Manoj, Yaakob Zahira, Balasubramanian N et al (2013) Facile synthesis of bimodal mesoporous spinel Co3O4 nanomaterials and their structural properties. Superlattices Microstruct. 64:15–26. https://doi.org/10.1016/j.spmi.2013.09.012

    Article  CAS  Google Scholar 

  67. Sun L, Shao R, Chen Z et al (2012) Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method. Appl Surf Sci 258:5455–5461. https://doi.org/10.1016/j.apsusc.2012.02.034

    Article  CAS  Google Scholar 

  68. Yang J, Li C, Yang Y et al (2022) Efficiency and mechanism of acridine orange removal by citric-acid-crosslinked β-cyclodextrin. Mater Lett 312:131688–131688. https://doi.org/10.1016/j.matlet.2022.131688

    Article  CAS  Google Scholar 

  69. Omer OS, Hussein MA, Hussein M, Mgaidi A (2018) Arabian J Chem 11:615. https://doi.org/10.1016/j.arabjc.2017.10.007

  70. Liu L, Gao ZY, Su XP et al (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3:432–442. https://doi.org/10.1016/j.cej.2008.07.017

    Article  CAS  Google Scholar 

  71. Patra AS, Ghorai S, Ghosh S et al (2016) Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles. J Hazard Mater 301:127-136. https://doi.org/10.1016/j.jhazmat.2015.08.042. (upar ke dono sath me hain)

  72. Xue Y, Hou H, Zhu S (2009) Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study. Chem Eng J 147:272–279. https://doi.org/10.1016/j.cej.2008.07.017

    Article  CAS  Google Scholar 

  73. Sriram G, Uthappa UT, Rego RM et al (2020) Ceria decorated porous diatom-xerogel as an effective adsorbent for the efficient removal of Eriochrome Black T. Chemosphere 238:124692. https://doi.org/10.1016/j.cej.2008.07.017

    Article  CAS  PubMed  Google Scholar 

  74. Hegde V, Uthappa UT, Suneetha M, Altalhi T, Han SS, Kurkuri MD (2023) Functional porous Ce-UiO-66 MOF@ Keratin composites for the efficient adsorption of trypan blue dye from wastewater: a step towards practical implementations. Chem Eng J 461:142103. https://doi.org/10.1016/j.cej.2023.142103

    Article  CAS  Google Scholar 

  75. Elmoubarki R, Mahjoubi FZ, Tounsadi Hanane et al (2015) Adsorption of textile dyes on raw and decanted Moroccan clays: kinetics, equilibrium and thermodynamics. Water Resour Ind 9:16–29. https://doi.org/10.1016/j.wri.2014.11.001

    Article  Google Scholar 

  76. Sarma Gautam Kumar, Gupta S, Bhattacharyya KG (2016) RETRACTED: Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension. J Environ Manage 171:1–10. https://doi.org/10.1016/j.jenvman.2016.01.038

    Article  CAS  PubMed  Google Scholar 

  77. Treybal RE (1980) Mass transfer operations. New York, 466, 493–497. 0-07-065176-0

  78. Chahinez Hadj-Otmane, Ouakouak Abdelkader, Youcef Leïla, Tran Hai Nguyen (2020) One-stage preparation of palm petiole-derived biochar: characterization and application for adsorption of crystal violet dye in water. Environ Technol Innov 19:100872–100872. https://doi.org/10.1016/j.eti.2020.100872

    Article  Google Scholar 

  79. Cantu Y, Remes A, Reyna A et al (2014) Thermodynamics, kinetics, and activation energy studies of the sorption of chromium(III) and chromium(VI) to a Mn3O4 nanomaterial. Chem Eng J 254:374–383. https://doi.org/10.1016/j.cej.2014.05.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Al-Zoubi Habis, Zubair M, Manzar Mohammad Saood et al (2020) Comparative adsorption of anionic dyes (Eriochrome Black T and Congo Red) onto Jojoba Residues: isotherm, kinetics and thermodynamic studies. Arabian J Sci Eng 45:7275–7287. https://doi.org/10.1007/s13369-020-04418-5

    Article  CAS  Google Scholar 

  81. Akhouairi S, Ouachtak H, Addi AA et al (2019) Natural sawdust as adsorbent for the eriochrome Black T dye removal from aqueous solution. Water Air Soil Pollut 230. https://doi.org/10.1007/s11270-019-4234-6

  82. Manzar MS, Zubair M, Khan NA, Husain Khan A, Baig U, Aziz MA, ... Abdel-Magid HI (2022) Adsorption behaviour of green coffee residues for decolourization of hazardous congo red and eriochrome black T dyes from aqueous solutions. Int J Environ Anal Chem 102(18):6405–6421

  83. Zeydouni G, Kianizadeh M, Khaniabadi YO, Nourmoradi H, Esmaeili S, Mohammadi MJ, Rashidi R (2018) Eriochrme black-T removal from aqueous environment by surfactant modified clay: equilibrium, kinetic, isotherm, and thermodynamic studies. Toxin Rev. https://doi.org/10.1080/15569543.2018.1455214

    Article  Google Scholar 

  84. Veerakumar P, Jeyapragasam T, Surabhi, Salamalai K, Maiyalagan T, Lin KC (2019) Functionalized mesoporous carbon nanostructures for efficient removal of eriochrome black-T from aqueous solution. J Chem Eng Data 64(4):1305-1321. https://doi.org/10.1021/acs.jced.8b00878

  85. Sadeghi S, Zakeri Hamid Reza, Saghi Mohammad Hossien et al (2020) Modified wheat straw–derived graphene for the removal of Eriochrome Black T: characterization, isotherm, and kinetic studies. Environ Sci Pollut Res 28:3556–3565. https://doi.org/10.1007/s11356-020-10647-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Director of National Institute of Technology, Raipur for providing laboratory facilities. Additionally, the authors would like to thank the University Grant Commission [F.No.16-6(DEC. 2018)/2019 (NET/CSIR)] for their financial support. The authors would also like to extend their appreciation to IIT Bhilai, IIT Guwahati, and NIT Surathkal for providing FE-SEM, VSM, and BET instruments respectively. These contributions were invaluable to the success of the research project.

Funding

University Grants Commission—South Eastern Regional Office,16-6(DEC. 2018)/2019(NET/CSIR),Aditya Narayan Tiwari

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Tapadia.

Ethics declarations

Declarations

Our experiment on the green synthesis of nanoparticles highlights the potential of using plant extracts as reducing agents for the eco-friendly production of nanoparticles. The results obtained from this study contribute to the growing field of green nanotechnology and open up new avenues for sustainable nanoparticle synthesis. Each author played a significant role in the experimental design, data analysis, and manuscript preparation.

Conflict of Interest

The authors do not have any conflicts of interest to disclose.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1570 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A.N., Tapadia, K. & Thakur, C. A Facile Synthesis of MgO Decorated Spinel Magnetic Nanoparticles Using Terminalia catappa Leaf Extract: Its Application in EBT Dye Removal. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00948-9

Keywords

Navigation