Skip to main content
Log in

Recent Development in Drugs of Abuse Detection: From Electrochemical Sensors to Microfluidic Coupled Electrochemical Sensors

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Drugs of abuse (illicit narcotics) are a significant problem in our culture, and both youth and adults are using them at frightening rates. Drug addiction have serious negative consequences such as: sexual assault, crime, and serious health problems. Herein, we report reviews on microfluidics and electrochemical methods applied on drugs of abuse detection using various substrate and different fabrication technique. Microfluidics and electrochemical methods give fast response, they are inexpensive, portable and implore simple techniques, which have paved way to reliable new methods, better than conventional methods previously used. The integration of microfluidic with electrochemical method is the new trend currently being explore as it offers a brand-new knowledge that is particularly beneficial for creating smart platforms for handling complex samples, chemical interactions, and biomedical sensing. Therefore, microfluidic coupled electrochemical method is a good research area that can be further explore.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arjun AM, Krishna PH, Nath AR, Rasheed PA (2022) A review on advances in the development of electrochemical sensors for the detection of anesthetic drugs. Anal Methods. https://doi.org/10.1039/d2ay01290a

    Article  PubMed  Google Scholar 

  2. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41. https://doi.org/10.1007/s00604-014-1308-4

    Article  CAS  Google Scholar 

  3. de Araujo WR, Cardoso TMG, da Rocha RG, Santana MHP, Muñoz RAA, Richter EM, Coltro WKT (2018) Portable analytical platforms for forensic chemistry: a review. Analyt Chim Acta 1034:1–21. https://doi.org/10.1016/j.aca.2018.06.014

    Article  CAS  Google Scholar 

  4. Rycke ED, Stove C, Dubruel P, Saeger SD, Beloglazova N (2020) Biosensors and Bioelectronics Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens Bioelectron 169(September):112579. https://doi.org/10.1016/j.bios.2020.112579

    Article  CAS  PubMed  Google Scholar 

  5. Musile G, Wang L, Bottoms J, Tagliaro F, McCord B (2015) The development of paper microfluidic devices for presumptive drug detection. Anal Methods 7(19):8025–8033. https://doi.org/10.1039/c5ay01432h

    Article  CAS  Google Scholar 

  6. Bazyar H (2023) On the application of microfluidic-based technologies in forensics: a review. Sensors 23:5856. https://doi.org/10.3390/s23135856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohseni N, Bahram M, Baheri T (2017) Chemical nose for discrimination of opioids based on unmodified gold nanoparticles. Sens Actuators, B Chem 250:509–517. https://doi.org/10.1016/j.snb.2017.04.145

    Article  CAS  Google Scholar 

  8. Ali EMA, Edwards HGM (2016) The detection of flunitrazepam in beverages using portable Raman spectroscopy. Drug Test Anal. https://doi.org/10.1002/dta.1969

    Article  PubMed  Google Scholar 

  9. Garcia-gutierrez E, Lledo-fernandez C (2013) Electroanalytical sensing of flunitrazepam based on screen printed graphene electrodes. Chemosensors. https://doi.org/10.3390/chemosensors1030068

    Article  Google Scholar 

  10. Biagi S, Ghimenti S, Onor M, Bramanti E (2012) Simultaneous determination of lactate and pyruvate in human sweat using reversed-phase high-performance liquid chromatography: a noninvasive approach. Biomed Chromatogr 26(11):1408–1415. https://doi.org/10.1002/bmc.2713

    Article  CAS  PubMed  Google Scholar 

  11. Leesakul N, Pongampai S, Kanatharana P (2012) A new screening method for flunitrazepam in vodka and tequila by fluorescence spectroscopy. Luminescence. https://doi.org/10.1002/bio.2348

    Article  PubMed  Google Scholar 

  12. Pal A, Kaswan K, Roy S, Lin Y, Chung J, Kumar M, Wu C (2023) Biosensors and Bioelectronics Microfluidic nanodevices for drug sensing and screening applications. Biosens Bioelectron 219(October 2022):114783. https://doi.org/10.1016/j.bios.2022.114783

    Article  CAS  PubMed  Google Scholar 

  13. Yehia AM, Farag MA, Tantawy MA (2020) Analytica Chimica Acta A novel trimodal system on a paper-based microfluidic device for on- site detection of the date rape drug “ketamine.” Anal Chim Acta 1104:95–104. https://doi.org/10.1016/j.aca.2020.01.002

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Mccord B (2020) A four-channel paper microfluidic device with gold nanoparticles and aptamers for seized drugs. Anal Biochem 595(November 2019):113619. https://doi.org/10.1016/j.ab.2020.113619

    Article  CAS  PubMed  Google Scholar 

  15. He M, Li Z, Ge Y, Liu Z (2016) Portable upconversion nanoparticles-based paper device for field testing of drug abuse. https://doi.org/10.1021/acs.analchem.5b04863

  16. Zeni J, Romão W (2022) Use of Paper Microdevices in the Identification and Quantification of Cocaine in Seized Street Samples. Braz J Anal Chem 9(34):118–137. https://doi.org/10.30744/brjac.2179-3425.AR-18-2021

    Article  Google Scholar 

  17. www.electrophoresis-journal.com Page 1 Electrophoresis. (n.d.), 1–16. https://doi.org/10.1002/elps.201700254

  18. Freitas JM, Ramos DLO, Sousa RMF, Paixão TRLC, Santana MHP, Muñoz RAA, Richter EM (2017) A portable electrochemical method for cocaine quantification and rapid screening of common adulterants in seized samples. Sens Actuators B Chem 243:557–565. https://doi.org/10.1016/j.snb.2016.12.024

    Article  CAS  Google Scholar 

  19. Oliveira XG, Munoz RAA, Henry CS, Coltro WKT (2018) Detection of analgesics and sedation drugs in whiskey using electrochemical paper-based analytical devices. Electroanalysis. https://doi.org/10.1002/elan.201800308

    Article  Google Scholar 

  20. De Jong M, Sleegers N, Kim J, Van Durme F, Samyn N, Wang J, De Wael K (2016) Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders. Chem Sci 7(3):2364–2370. https://doi.org/10.1039/c5sc04309c

    Article  PubMed  PubMed Central  Google Scholar 

  21. Coltro T, Cheng C, Carrilho E, De Jesus DP (2014) Recent advances in low-cost microfluidic. Electrophoresis. https://doi.org/10.1002/elps.201400006

    Article  PubMed Central  Google Scholar 

  22. Silva TG, De Araujo WR, Mun RAA, Richter EM (2016) Simple and sensitive paper-based device coupling electrochemical sample pretreatment and colorimetric detection. https://doi.org/10.1021/acs.analchem.6b00072

  23. De Araujo WR, Paixão WR (2014) Fabrication of disposable electrochemical devices using silver ink and office paper. Analyst 139(11):2742–2747. https://doi.org/10.1039/c4an00097h

    Article  CAS  PubMed  Google Scholar 

  24. Boroujerdi R, Paul R (2022) Graphene-based electrochemical sensors for psychoactive drugs. Nanomaterials 12:2250. https://doi.org/10.3390/nano12132250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao J, Kan Y, Chen Z, Li H, Zhang W (2023) MOFs-modified electrochemical sensors and the application in the detection of opioids. Biosensors 13(2):284. https://doi.org/10.3390/bios13020284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su F, Zhang S, Ji H, Zhao H, Tian J (2017) Two-Dimensional Zirconium-based Metal − Organic Framework Nanosheet Composites Embedded with Au Nanoclusters: a Highly Sensitive Electrochemical Aptasensor towards Detecting Cocaine. ACS Sens. https://doi.org/10.1021/acssensors.7b00268

    Article  PubMed  Google Scholar 

  27. Azadbakht A, Reza A (2019) Engineering an aptamer-based recognition sensor for electrochemical opium alkaloid biosensing. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-018-00618-w

    Article  Google Scholar 

  28. Asturias-arribas L, Alonso-lomillo MA, Domínguez-renedo O, Arcos-martínez MJ (2011) CYP450 biosensors based on screen-printed carbon electrodes for the determination of cocaine. Anal Chim Acta 685(1):15–20. https://doi.org/10.1016/j.aca.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  29. Domı O, Arcos-martı MJ, Asturias-arribas L, Asuncio M (2013) Electrochemical determination of cocaine using screen-printed cytochrome P450 2B4 based biosensors. Talanta 105:131–134. https://doi.org/10.1016/j.talanta.2012.11.078

    Article  CAS  Google Scholar 

  30. Sanli S, Moulahoum H, Ugurlu O, Ghorbanizamani F, Pinar Z, Evran S, Timur S (2020) Talanta Screen printed electrode-based biosensor functionalized with magnetic cobalt / single-chain antibody fragments for cocaine biosensing in different matrices. Talanta 217(May):121111. https://doi.org/10.1016/j.talanta.2020.121111

    Article  CAS  PubMed  Google Scholar 

  31. Balbino MA, Oiye ÉN, Ribeiro MFM, Júnior JWC, Eleotério IC, Ipólito AJ, De Oliveira MF (2016) Use of screen-printed electrodes for quantification of cocaine and Δ9-THC: adaptions to portable systems for forensic purposes. J Solid State Electrochem. https://doi.org/10.1007/s10008-016-3145-3

    Article  Google Scholar 

  32. Honeychurch KC, Hart JP (2008) Determination of flunitrazepam and nitrazepam in beverage samples by liquid chromatography with dual electrode detection using a carbon fibre veil electrode. J Solid State Electrochem. https://doi.org/10.1007/s10008-008-0536-0

    Article  Google Scholar 

  33. Atta NF, Galal A, Azab SM (2011) Determination of morphine at gold nanoparticles/Nafion carbon paste modified sensor electrode. Analyst 136:4682–4691. https://doi.org/10.1039/C1AN15423K

    Article  CAS  PubMed  Google Scholar 

  34. Ensafi AA, Rezaei B, Krimi-Maleh H (2011) An ionic liquid-type multiwall carbon nanotubes paste electrode for electrochemical investigation and determination of morphine. Ionics 17:659–668

    Article  CAS  Google Scholar 

  35. Navaee A, Salimi A, Teymourian H (2012) Graphene nano-sheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens Bioelectron 31:205–211

    Article  CAS  PubMed  Google Scholar 

  36. Sanghavi BJ, Srivastava AK (2011) Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Anal Chim Acta 706(2):246–254. https://doi.org/10.1016/j.aca.2011.08.040

    Article  CAS  PubMed  Google Scholar 

  37. Atta NF, Ahmed RA, Amin HMA, Galal A (2012) Monodispersed gold nanoparticles decorated carbon nanotubes as an enhanced sensing platform for nanomolar detection of tramadol. Electroanalysis 24:2135–2146

    Article  CAS  Google Scholar 

  38. Habibi B, Abazari M, Pournaghi-Azar MH (2014) Simultaneous determination of codeine and caffeine using single-walled carbon nanotubes modified carbon-ceramic electrode. Colloids Surf B 114:89–95

    Article  CAS  Google Scholar 

  39. Muzetti Ribeiro MF, da Cruz Júnior JW, Dockal ER, Mccord BR, de Oliveira MF, Fernanda M, de Oliveira MF (2016) Voltammetric determination of cocaine using carbon screen printed electrodes chemically modified with uranyl schiff base films. Electroanalysis 28(2):320–326. https://doi.org/10.1002/elan.201500372

    Article  CAS  Google Scholar 

  40. Mousaabadi KZ, Ensafi AA, Rezaei B (2022) Simultaneous determination of some opioid drugs using Cu-Hemin MOF@MWCNTs as an electrochemical sensor. Chemosphere 303:135149

    Article  CAS  PubMed  Google Scholar 

  41. Rezaei B, Foroughi-dehnavi S, Ensafi AA (2015) Fabrication of electrochemical sensor based on molecularly imprinted polymer and nanoparticles for determination trace amounts of morphine. https://doi.org/10.1007/s11581-015-1458-3

  42. Li Y, Zou L, Li Y, Li K, Ye B (2014) A new voltammetric sensor for morphine detection based on electrochemically reduced MWNTs-doped graphene oxide composite film. Sens Actuators B Chem 201:511–519. https://doi.org/10.1016/j.snb.2014.05.034

    Article  CAS  Google Scholar 

  43. Kumary VA, Abraham P, Renjini S, Swamy BEK, Nancy TEM, Sreevalsan A (2019) A novel heterogeneous catalyst based on reduced graphene oxide supported copper coordinated amino acid—a platform for morphine sensing. J Electroanal Chem 850:113367. https://doi.org/10.1016/j.jelechem.2019.113367

    Article  CAS  Google Scholar 

  44. Bahrami G, Ehzari H, Mirzabeigy S, Mohammadi B (2020) Fabrication of a sensitive electrochemical sensor based on electrospun magnetic nanofibers for morphine analysis in biological samples. Mater Sci Eng C 106(August 2019):110183. https://doi.org/10.1016/j.msec.2019.110183

    Article  CAS  Google Scholar 

  45. Ahmar H, Tabani H, Koruni MH, Saeed S, Davarani H, Reza A (2014) A new platform for sensing urinary morphine based on carrier assisted electromembrane extraction followed by adsorptive stripping voltammetric detection on screen-printed electrode. Biosens Bioelectron 54:189–194. https://doi.org/10.1016/j.bios.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  46. Soleimani M, Afshar G, Shafaat A, Crespo A (2013) High-selective tramadol sensor based on modified molecularly imprinted polymer à carbon paste electrode with multiwalled carbon nanotubes. Electroanalysis. https://doi.org/10.1002/elan.201200601

    Article  Google Scholar 

  47. Mohamed MA, Atty SA, Salama NN, Banks CE (2017) Highly selective sensing platform utilizing graphene oxide and multiwalled carbon nanotubes for the sensitive determination of tramadol in the presence of co-formulated drugs. Electroanalysis. https://doi.org/10.1002/elan.201600668

    Article  Google Scholar 

  48. Aflatoonian MR, Tajik S, Aflatoonian B, Beitollahi H (2020) A screen-printed electrode modified with graphene/Co3O4 nanocomposite for electrochemical detection of tramadol. Front Chem 8(November):1–8. https://doi.org/10.3389/fchem.2020.562308

    Article  CAS  Google Scholar 

  49. Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014) Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene—CoFe2O4 nancomposite modified carbon paste electrode. Sens Actuators B Chem 203:909–918. https://doi.org/10.1016/j.snb.2014.07.031

    Article  CAS  Google Scholar 

  50. Screen-printed SG, Mohamed MA, El-gendy DM, Banks CE, Allam NK (2017) Author’ s accepted manuscript. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2017.10.020

    Article  Google Scholar 

  51. Hossein M, Rasouli F (2014) Design of a new carbon paste electrode modified with TiO2 nanoparticles to use in an electrochemical study of codeine and simultaneous determination of codeine and acetaminophen in human plasma serum samples. Electroanalysis. https://doi.org/10.1002/elan.201400141

    Article  Google Scholar 

  52. Li Y, Li K, Song G, Liu J, Zhang K, Ye B (2013) Electrochemical behavior of codeine and its sensitive determination on graphene-based modified electrode. Sens Actuators B Chem 182:401–407. https://doi.org/10.1016/j.snb.2013.03.023

    Article  CAS  Google Scholar 

  53. Aurelio RD, Chianella I, Goode JA, Tothill IE (2020) Molecularly imprinted nanoparticles based sensor for cocaine detection. Biosensors. https://doi.org/10.3390/bios10030022

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jong MD, Florea A, Vries AD, Van Nuijs ALN, Durme FV, Martins JC, Wael KD (2018) Levamisole: a common adulterant in cocaine street samples hindering electrochemical detection of cocaine Levamisole: a common adulterant in cocaine street samples hindering electrochemical detection of cocaine. Anal Chem. https://doi.org/10.1021/acs.analchem.8b00204

    Article  PubMed  Google Scholar 

  55. Garrido JMPJ, Borges F, Brett CMA, Garrido EMPJ (2016) Carbon nanotube β-cyclodextrin-modified electrode for quantification of cocaine in seized street samples. Ionics. https://doi.org/10.1007/s11581-016-1765-3

    Article  Google Scholar 

  56. Roushani M, Shahdost-fard F (2015) An aptasensor for voltammetric and impedimetric determination of cocaine based on a glassy carbon electrode modified with platinum nanoparticles and using rutin as a redox probe. https://doi.org/10.1007/s00604-015-1604-7

  57. Roushani M, Shahdost-fard F (2016) Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample. Mater Sci Eng, C 61:599–607. https://doi.org/10.1016/j.msec.2016.01.002

    Article  CAS  Google Scholar 

  58. Shahdost-fard F, Roushani M (2016) Conformation switching of an aptamer based on cocaine enhancement on a surface of modified GCE. Talanta 154:7–14. https://doi.org/10.1016/j.talanta.2016.03.055

    Article  CAS  PubMed  Google Scholar 

  59. Economou A, Kokkinos C (2020) Rapid drop-volume electrochemical detection of the. https://doi.org/10.3390/s20185192

  60. Liu H, Qing H, Li Z, Long Y, Lin M, Yang H, Li A (2017) Paper: a promising material for human-friendly functional wearable electronics. Mater Sci Eng R 112:1–22. https://doi.org/10.1016/j.mser.2017.01.001

    Article  CAS  Google Scholar 

  61. Fernández-la-Villa A, Pozo-Ayuso DF, Castaño-Álvarez M (2019) Microfluidics and electrochemistry: an emerging tandem for next-generation analytical microsystems. Curr Opin Electrochem 15:175–185. https://doi.org/10.1016/j.coelec.2019.05.014

    Article  CAS  Google Scholar 

  62. Toniolo R, Pizzariello A, Impellizzieri F, Piccin E, Bontempelli G (2013) Nicolo Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis. https://doi.org/10.1002/elps.201200425

    Article  PubMed  Google Scholar 

  63. Musile G, Grazioli C, Fornasaro S, Dossi N, De Palo EF, Tagliaro F, Bortolotti F (2023) Application of paper-based microfluidic analytical devices (µPAD) in forensic and clinical toxicology: a review. Biosensors 13:743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Polymers RT (2017) Methods of recycling, properties and applications of recycled thermoplastic polymers. https://doi.org/10.3390/recycling2040024

  65. Jung W, Jang A, Bishop PL, Ahn CH (2011) A polymer lab chip sensor with microfabricated planar silver electrode for continuous and on-site heavy metal measurement. Sens Actuators B Chem 155(1):145–153. https://doi.org/10.1016/j.snb.2010.11.039

    Article  CAS  Google Scholar 

  66. Barfidokht A, Mishra RK, Seenivasan R, Liu S, Hubble LJ, Wang J, Hall DA (2019) Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sens Actuators B Chem 296(April):126422. https://doi.org/10.1016/j.snb.2019.04.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smith JP, Metters JP, Kampouris DK, Lledo-fernandez C, Sutcli OB, Banks CE (2013) Forensic electrochemistry: the electroanalytical sensing of Rohypnol® (flunitrazepam) using screen-printed graphite electrodes without recourse for electrode or sample pre-treatment. Analyst. https://doi.org/10.1039/c3an01352a

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li X, Chen Z, Zhong Y, Yang F, Pan J, Liang Y (2012) Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip. Anal Chim Acta 710:118–124. https://doi.org/10.1016/j.aca.2011.10.035

    Article  CAS  PubMed  Google Scholar 

  69. Berrettoni M, Giorgetti M, Cox JA, Ranganathan D, Conti P, Zamponi S (2012) Electrochemical synthesis of nano-cobalt hexacyanoferrate at a sol-gel-coated electrode templated with β-cyclodextrin. J Solid-State Electrochem 16:2861–2866. https://doi.org/10.1007/s10008-012-1714-7

    Article  CAS  Google Scholar 

  70. Dutse SW, Yusof NA (2011) Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview. Sensors 11:5754–5768. https://doi.org/10.3390/s110605754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Adkins J, Boehle K, Henry C (2015) Electrochemical paper-based microfluidic devices. Electrophoresis 1:1–33. https://doi.org/10.1002/elps.201500084

    Article  CAS  Google Scholar 

  72. Wei X, Tian T, Jia S, Zhu Z, Ma Y, Sun J, Lin Z (2015) Target-responsive DNA hydrogel mediated “Stop-Flow” microfluidic paper-based analytic device for rapid. Portable Vis Detect Multiple Targets. https://doi.org/10.1021/acs.analchem.5b00532

    Article  Google Scholar 

  73. Li J, Zhu Z, Zhang H, Lin Z, Yang CJ (2015) Author’ s accepted manuscript. Biosens Bioelectronic. https://doi.org/10.1016/j.bios.2015.09.049

    Article  Google Scholar 

  74. Schmidt-Speicher LM, Länge K (2021) Microfluidic integration for electrochemical biosensor applications. Curr Opin Electrochem 29:100755. https://doi.org/10.1016/j.coelec.2021.100755

    Article  CAS  Google Scholar 

  75. Nesakumar N, Kesavan S, Li CZ, Alwarappan S (2019) Microfluidic electrochemical devices for biosensing. J Anal Test 3(1):3–18. https://doi.org/10.1007/s41664-019-0083-y

    Article  Google Scholar 

  76. Han YL, Liu H, Ouyang C, Lu TJ, Xu F (2015) Liquid on paper: rapid prototyping of soft functional components for paper electronics. Nat Publ Group. https://doi.org/10.1038/srep11488

    Article  Google Scholar 

  77. Musile G, Agard Y, Wang L, Franco E, Palo D, Mccord B, Tagliaro F (2021) Paper-based microfluidic devices: on-site tools for crime scene investigation. Trends Anal Chem 143:116406. https://doi.org/10.1016/j.trac.2021.116406

    Article  CAS  Google Scholar 

  78. Sharma N, Barstis T, Giri B (2018) Advances in paper-analytical methods for pharmaceutical analysis. Eur J Pharm Sci 111(July 2017):46–56. https://doi.org/10.1016/j.ejps.2017.09.031

    Article  CAS  PubMed  Google Scholar 

  79. Narang J, Malhotra N, Singhal C, Mathur A (2016) PT US CR. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2016.11.128

    Article  Google Scholar 

  80. Ansari N, Lodha A, Pandya A, Menon SK (2017) Determination of cause of death using paper-based microfluidic device as a colorimetric probe. Anal Methods 9(38):5632–5639. https://doi.org/10.1039/c7ay01784g

    Article  CAS  Google Scholar 

  81. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(14):5821–5826

    Article  CAS  PubMed  Google Scholar 

  82. Lamas-ardisana PJ, Casuso P, Fernandez-gauna I, Martínez-paredes G, Jubete E, Añorga L, Grande HJ (2016) Disposable electrochemical paper-based devices fully fabricated by screen-printing technique. Electrochem Commun. https://doi.org/10.1016/j.elecom.2016.11.015

    Article  Google Scholar 

  83. Zhang AL, Zha Y (2012) Fabrication of paper-based microfluidic device using printed circuit technology. AIP Adv 10(1063/1):4733346

    Google Scholar 

  84. Kong X, Chong X, Squire K, Wang AX (2018) Microfluidic diatomite analytical devices for illicit drug sensing with ppb-Level sensitivity. Sens Actuators, B Chem 259:587–595. https://doi.org/10.1016/j.snb.2017.12.038

    Article  CAS  PubMed  Google Scholar 

  85. Santhiago M, Kubota LT (2013) A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens Actuators B Chem 177:224–230. https://doi.org/10.1016/j.snb.2012.11.002

    Article  CAS  Google Scholar 

  86. Santhiago M, Henry CS, Kubota LT (2014) Low cost, simple three-dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochim Acta 130:771–777. https://doi.org/10.1016/j.electacta.2014.03.109

    Article  CAS  Google Scholar 

  87. Dossi N, Toniolo R, Impellizzieri F, Bontempelli G (2014) Doped pencil leads for drawing modified electrodes on paper-based electrochemical devices. J Electroanal Chem 723:90–94. https://doi.org/10.1016/j.jelechem.2014.03.038

    Article  CAS  Google Scholar 

  88. Dossi N, Toniolo R, Terzi F, Impellizzieri F, Bontempelli G (2014) Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochim Acta 146:518–524. https://doi.org/10.1016/j.electacta.2014.09.049

    Article  CAS  Google Scholar 

  89. Tai YL, Yang ZG (2011) Fabrication of paper-based conductive patterns for flexible electronics by direct-writing. J Mater Chem 21(16):5938–5943. https://doi.org/10.1039/c0jm03065a

    Article  CAS  Google Scholar 

  90. Liana DD, Raguse B, Wieczorek L, Baxter GR, Chuah K, Gooding JJ, Chow E (2013) RSC Adv 3:8683

    Article  CAS  Google Scholar 

  91. Methods A, Honeychurch KC, Chong T, Hart JP (2012) Novel electrode reactions of diazepam, flunitrazepam and lorazepam and their exploitation in a new redox mode LC-DED assay for serum. Anal Methods. https://doi.org/10.1039/c1ay05419h

    Article  Google Scholar 

  92. Abraham P, Renjini S, Vijayan P, Nisha V, Sreevalsan K (2020) Review—review on the progress in electrochemical detection of morphine based on different modified electrodes review—review on the progress in electrochemical detection of morphine based on different modified electrodes. J Electrochem Soc. https://doi.org/10.1149/1945-7111/ab6cf6

    Article  Google Scholar 

  93. Ensafi AA, Izadi M, Rezaei B, Karimi-Maleh H (2012) N-hexyl-3-methylimidazolium hexafluoro phosphate/multiwall carbon nanotubes paste electrode as a biosensor for voltammetric detection of morphine. J Mol Liq 174:42–47

    Article  CAS  Google Scholar 

  94. Babaei A, Babazadeh M (2011) Multi-walled carbon nanotubes/ chitosan polymer composite modified glassy carbon electrode for sensitive simultaneous determination of levodopa and morphine. Anal Methods 3:2400–2405

    Article  CAS  Google Scholar 

  95. Mokhtari A, Karimi-Maleh H, Ensafi AA, Beitollahi H (2012) Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sens Actuators B 169:96–105

    Article  CAS  Google Scholar 

  96. Florea A, Schram J, De Jong M, Eliaerts J, Van Durme F, Kaur B, Samyn N, De Wael K (2019) Anal Chem 91:7920–7928. https://doi.org/10.1021/acs.analchem.9b01796

    Article  CAS  PubMed  Google Scholar 

  97. Amin S, Hameed A, Memon N, Solangi AR, Aslam M, Sirajuddin, Soomro MT (2016) The efficacy of the Nafion®blended CTAB protected Au nanoparticles for the electrochemical detection of tramadol in wastewater: a parametric investigation. J Environ Chem Eng 4(4):3825–3834. https://doi.org/10.1016/j.jece.2016.08.010

    Article  CAS  Google Scholar 

  98. Ghorbani-Bidkorbeh F, Shahrokhian S, Mohammadi A, Dinarvand R (2010) Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode. Electrochim Acta 55:2752–2759

    Article  CAS  Google Scholar 

  99. Diouf A, Aghoutane Y, Burhan H, Sen F, Bouchikhi B, El N (2021) Tramadol sensing in non-invasive biological fluids using a voltammetric electronic tongue and an electrochemical sensor based on biomimetic recognition. Int J Pharm 593(November 2020):120114. https://doi.org/10.1016/j.ijpharm.2020.120114

    Article  CAS  PubMed  Google Scholar 

  100. Tavana T, Reza A, Karimi-maleh H (2020) Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: an excellent, powerful electrocatalyst for the fabrication of an electrochemical sensor to determine nalbuphine in the presence of tramadol. J Pharm Biomed Anal 189:113397. https://doi.org/10.1016/j.jpba.2020.113397

    Article  CAS  PubMed  Google Scholar 

  101. Arabali V, Malekmohammadi S, Karimi F (2020) Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nanocomposite; a powerful electrochemical strategy for determination of tramadol. Microchem J 158(February):105179. https://doi.org/10.1016/j.microc.2020.105179

    Article  CAS  Google Scholar 

  102. Bagherinasab Z, Beitollahi H, Yousefi M, Bagherzadeh M (2020) Rapid sol gel synthesis of BaFe12O19 nanoparticles: an excellent catalytic application in the electrochemical detection of tramadol in the presence of acetaminophen. Microchem J 156(March):104803. https://doi.org/10.1016/j.microc.2020.104803

    Article  CAS  Google Scholar 

  103. Jahromi Z, Mirzaei E, Savardashtaki A, Afzali M, Afzali Z (2020) A rapid and selective electrochemical sensor based on electrospun carbon nanofibers for tramadol detection. Microchem J 157(March):104942. https://doi.org/10.1016/j.microc.2020.104942

    Article  CAS  Google Scholar 

  104. Lad AN, Pandya A, Agrawal YK (2015). Overview on nano enabled screening of drug facilitated crime: A. In: trends in analytical chemistry. Elsevier B.V. https://doi.org/10.1016/j.trac.2015.07.016

  105. Wong A, Cardenas A, Baena-moncada M, Maria DP, Sotomayor T (2021) A new electrochemical platform based on carbon black paste electrode modified with α -cyclodextrin and hierarchical porous carbon used for the simultaneous determination of dipyrone and codeine. Microchem J. https://doi.org/10.1016/j.microc.2021.106032

    Article  Google Scholar 

  106. Babaei A, Dehdashti A, Afrasiabi M, Babazadeh M, Farshbaf M (2012) A sensor for simultaneous determination of acetaminophen and codeine at glassy carbon electrode modified with multi-walled carbon nanotubes. Sens Lett 10:1039–1046

    Article  CAS  Google Scholar 

  107. Švorc L, Sochr J, Svítková J, Rievaj M, Bustin D (2013) Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode. Electrochim Acta 87:503–510

    Article  Google Scholar 

  108. Mohammadi N, Bahmaei M, Sharif AM (2021) Highly sensitive CuZnO-Fe3O 4/rGO modified glassy carbon electrode for the electrochemical determination of acetaminophen, tyrosine and codeine in human blood plasma and urine. J Electroanal Chem 902(June):115768. https://doi.org/10.1016/j.jelechem.2021.115768

    Article  CAS  Google Scholar 

  109. Khairy M (2021) A synergetic effect of cerium oxide nanocubes and gold nanoparticles for developing a new photoelectrochemical sensor of codeine drug. J Electroanal Chem 895(July):115517. https://doi.org/10.1016/j.jelechem.2021.115517

    Article  CAS  Google Scholar 

  110. Martin A, Almeida T, Campanha F, Fatibello-filho O (2020) Flow injection analysis system with electrochemical detection for the simultaneous determination of nanomolar levels of acetaminophen and codeine. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.04.012

    Article  Google Scholar 

  111. Florea A, Cowen T, Piletsky S, Wael KD (2019) Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity. Analyst. https://doi.org/10.1039/c9an00618d

    Article  PubMed  Google Scholar 

  112. Masemola DP, Mafa PJ, Nyoni H, Mamba BB, Msagati TAM (2020). J Environ Sci Health Part B Pestic Food Contam Agric Wastes. https://doi.org/10.1080/03601234.2020.1713670,0

    Article  Google Scholar 

  113. Dragan A, Truta FM, Tertis M, Florea A, Schram J (2021) Electrochemical fingerprints of illicit drugs on graphene and multi-walled carbon nanotubes. Front Chem 9(March):1–10. https://doi.org/10.3389/fchem.2021.641147

    Article  CAS  Google Scholar 

  114. Microfluidic Electrochemical Immunosensor for the Trace Analysis of Cocaine in Water and Body Fluids Nahla A. Abdelshafi, (n.d.). https://doi.org/10.1002/dta.2515

  115. Wu K, Wang H, Chen F, Hu S (2006) Electrochemistry and voltammetry of procaine using a carbon nanotube film coated electrode. Bioelectrochemistry 68:144–149

    Article  CAS  PubMed  Google Scholar 

  116. Zhang X, Zhao D, Feng L, Jia L, Wang S (2010) Electrochemical sensor for procaine based on a glassy carbon electrode modified with poly-amidosulfonic acid and multi-walled carbon nanotubes. Microchim Acta 169:153–159

    Article  CAS  Google Scholar 

  117. Narang J, Singhal C, Mathur A, Kumar A, Krishna A, Anil A, Pundir CS (2018) Naked-eye quantitative assay on paper device for date rape drug sensing via smart phone APP. Vaccum. https://doi.org/10.1016/j.vacuum.2018.03.056

    Article  Google Scholar 

  118. Mcneill L, Pearson C, Megson D, Norrey J, Ashworth D, Linton PE, Shaw KJ (2020) Origami Chip: development and validation of a paper-based Lab- on-a-Chip device for the rapid and cost-effective detection of 4-methylmethcathinone (mephedrone) and its metabolite, 4-methylephedrine in urine. Forensic Chem. https://doi.org/10.1016/j.forc.2020.100293

    Article  Google Scholar 

  119. Lockwood TE, Leong TX, Bliese SL, Helmke A, Richard A, Merga G, Lieberman M (2020) idPAD: paper analytical device for presumptive identification of illicit drugs. J Forensic Sci. https://doi.org/10.1111/1556-4029.14318

    Article  PubMed  PubMed Central  Google Scholar 

  120. Anzar N, Suleman S, Parvez S, Narang J (2022) A review on Illicit drugs and biosensing advances for its rapid detection. Process Biochem 113(August 2021):113–124. https://doi.org/10.1016/j.procbio.2021.12.021

    Article  CAS  Google Scholar 

  121. Jagriti N, Chaitali S, Manika K, Ashish M, Akshay J, Pundir CS (2017) Hydrothermally synthesized zinc oxide nanorods incorporated on lab-on-paper device for electrochemical detection of recreational drug. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2017.1381614

    Article  Google Scholar 

  122. Narang J, Singhal C, Mathur A, Khanuja M, Varshney A, Garg K, Pundir CS (2017) Lab on paper chip integrated with Si@GNRs for electroanalysis of diazepam. Anal Chim Acta. https://doi.org/10.1016/j.aca.2017.05.006

    Article  PubMed  Google Scholar 

  123. Santana P, Filho NRA, Coltro WKT (2021) Sandpaper-based electrochemical devices assembled on a reusable 3D-printed holder to detect date rape drug in beverages. Talanta. https://doi.org/10.1016/j.talanta.2021.122408

    Article  PubMed  Google Scholar 

  124. Yeasmin S, Ammanath G, Onder A, Yan E, Hakan U (2022) Current trends and challenges in point-of-care urinalysis of biomarkers in trace amounts. Trends Anal Chem 157:116786. https://doi.org/10.1016/j.trac.2022.116786

    Article  CAS  Google Scholar 

  125. Dagar M, Yadav S, Sai VVR, Satija J, Bhatia H (2022) Emerging trends in point-of-care sensors for illicit drugs analysis. Talanta 238(P2):123048. https://doi.org/10.1016/j.talanta.2021.123048

    Article  CAS  PubMed  Google Scholar 

  126. Joosten F, Parrilla M, Van Nuijs ALN, Ozoemena KI, Wael KD (2022) Electrochemical detection of illicit drugs in oral fluid: potential for forensic drug testing. Electrochim Acta 436(September):141309. https://doi.org/10.1016/j.electacta.2022.141309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the grants under TETFUND Institution Based Research (IBR) and National Research Fund; TETFund/DR&D/CE/NRF/CC/15/Vol1.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salamatu Hayatu.

Ethics declarations

Conflicts of Interest

The author declares no conflict of interest.

Informed Consent Statement

Not applicable.

Ethical Approval Statement

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayatu, S., Audu, A.A. & Ladan, M. Recent Development in Drugs of Abuse Detection: From Electrochemical Sensors to Microfluidic Coupled Electrochemical Sensors. Chemistry Africa 7, 1783–1801 (2024). https://doi.org/10.1007/s42250-024-00885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-024-00885-7

Keywords

Navigation