Skip to main content
Log in

Exploration of Na2CaP2O7 as a Nanocatalyst for Eco-conscious Synthesis of 4H-Pyran Derivatives: Computational Examination Utilizing DFT and Docking Techniques

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The synthesis of 4H-Pyran derivatives via a one-pot approach using a nanostructured Na2CaP2O7 catalyst in a heterogeneous medium is reported in this study. To our understanding, this particular catalyst has not been employed in previous instances for the synthesis of 4H-Pyran derivatives. The significance of this catalyst, due to its non-toxicity and large surface area, offers good yields with minimum by-product generation. Several characterization techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) study, and various spectroscopic techniques (1H NMR, 13C NMR, and FT-IR), were employed to examine the different steps of our work. For the first time, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations were used to perform elemental analysis of the nano-catalyst and to elucidate the mechanism of 4H-Pyran molecule synthesis, demonstrating the pivotal role of Na2CaP2O7 in this reaction. The synthesized 4H-Pyran derivatives were evaluated for their antibacterial activity by analyzing their interactions with AutoDock. The results revealed binding energies ranging from − 6.4 to − 7.8 kcal/mol, with compound 4k exhibiting the highest binding affinity. These findings highlight the catalytic promotion of Na2CaP2O7, suggesting its potential as a valuable catalyst for 4H-Pyran synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Chem Heterocycl Compd 48:7–10. https://doi.org/10.1007/s10593-012-0960-z

    Article  CAS  Google Scholar 

  2. Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O (2016) Modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem 14:6611–6637. https://doi.org/10.1039/c6ob00936k

    Article  CAS  PubMed  Google Scholar 

  3. Obaid RJ, Mughal EU, Naeem N, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA (2022) Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem 120:250–259. https://doi.org/10.1016/j.procbio.2022.06.009

    Article  CAS  Google Scholar 

  4. Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N (2020) Current contributions of organofluorine compounds to the agrochemical industry. iScience 23:101467. https://doi.org/10.1016/j.isci.2020.101467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lamberth C, Jurgen D (2012) Modern methods in crop protection research heterocycles in natural product synthesis bioactive heterocyclic compound classes asymmetric synthesis of nitrogen heterocycles modern crop protection compounds. Wiley, London

    Google Scholar 

  6. Malapit CA, Howell AR (2015) Recent applications of oxetanes in the synthesis of heterocyclic compounds. J Org Chem 80:8489–8495. https://doi.org/10.1021/acs.joc.5b01255

    Article  CAS  PubMed  Google Scholar 

  7. Ye Z, Xu R, Shao X, Xu X, Li Z (2010) One-pot synthesis of polyfunctionalized 4H-pyran derivatives bearing fluorochloro pyridyl moiety. Tetrahedron Lett 51:4991–4994. https://doi.org/10.1016/j.tetlet.2010.07.065

    Article  CAS  Google Scholar 

  8. Pratap R, Ram VJ (2017) 2H-Pyran-2-ones and their annelated analogs as multifaceted building blocks for the fabrication of diverse heterocycles. Tetrahedron 73:2529–2590. https://doi.org/10.1016/j.tet.2017.02.028

    Article  CAS  Google Scholar 

  9. Wang DC, Xie YM, Fan C, Yao S, Song H (2014) Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity. Chinese Chem Lett 25:1011–1013. https://doi.org/10.1016/j.cclet.2014.04.026

    Article  CAS  Google Scholar 

  10. Poor Heravi MR, Aghamohammadi P, Vessally E (2022) Green synthesis and antibacterial, antifungal activities of 4H-pyran, tetrahydro-4H-chromenes and spiro2-oxindole derivatives by highly efficient Fe3O4@SiO2@NH2@Pd(OCOCH3)2 nanocatalyst. J Mol Struct 1249:131534. https://doi.org/10.1016/j.molstruc.2021.131534

    Article  CAS  Google Scholar 

  11. Dung TTM, Kim SC, Yoo BC, Sung GH, Yang WS, Kim HG, Park JG, Rhee MH, Park KW, Yoon K, Lee Y, Hong S, Kim JH, Cho JY (2014) (5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl 6-hydroxynaphthalene-2-carboxylate, a kojic acid derivative, inhibits inflammatory mediator production via the suppression of Syk/Src and NF-κB activation. Int Immunopharmacol 20:37–45. https://doi.org/10.1016/j.intimp.2014.02.019

    Article  CAS  PubMed  Google Scholar 

  12. Elsayed DA, Assy MG, Mousa SM, El-Bassyouni GT, Mouneir SM, Shehab WS (2022) TiO2 nanoparticle as catalyst for an efficient green one-pot synthesis of 1H-3-indolyl derivatives as significant antiviral activity. Bioorg Chem 124:105805. https://doi.org/10.1016/j.bioorg.2022.105805

    Article  CAS  PubMed  Google Scholar 

  13. Agarwal S, Sethiya A, Soni J, Sahiba N, Teli P (2022) An overview of recent advances in the catalytic synthesis of substituted pyrans. Appl Organomet Chem 36:e6604. https://doi.org/10.1002/AOC.6604

    Article  CAS  Google Scholar 

  14. Anshu Dandia A, Sonam Parihar A, Ruchi Sharma A, Kuldeep S, Rathore BVPA (2020) Chapter 4-Nanocatalysis in green organic synthesis. Green Sustain Process Chem Environ Eng Sci 2020:71–103

  15. Kamalzare M, Bayat M, Maleki A (2020) Green and efficient three-component synthesis of 4H-pyran catalysed by CuFe2O4 @starch as a magnetically recyclable bionanocatalyst: Green synthesis of 4H-pyrans. R Soc Open Sci. https://doi.org/10.1098/rsos.200385rsos200385

  16. Mansoor SS, Logaiya K, Aswin K, Sudhan PN (2015) An appropriate one-pot synthesis of 3,4-dihydropyrano[c]chromenes and 6-amino-5-cyano-4-aryl-2-methyl-4H-pyrans with thiourea dioxide as an efficient, reusable organic catalyst in aqueous medium. J Taibah Univ Sci 9:213–226. https://doi.org/10.1016/j.jtusci.2014.09.008

    Article  Google Scholar 

  17. Dandia A, Bansal S, Sharma R, Parewa V (2018) Water-triggered metal-free synthesis of pyranopyrazoles via one-pot oxidation/michael addition/cyclization/dehydration sequence. ChemistrySelect 3:9785–9789. https://doi.org/10.1002/slct.201801691

    Article  CAS  Google Scholar 

  18. Hiremath PB, Kantharaju K (2020) An efficient and facile synthesis of 2-amino-4H-pyrans & Tetrahydrobenzo [b] pyrans catalysed by WEMFSA at room temperature, pp 1896–1906. https://doi.org/10.1002/slct.201904336

  19. Dandia A, Parewa V, Jain AK, Rathore KS (2011) Step-economic, efficient, ZnS nanoparticle-catalyzed synthesis of spirooxindole derivatives in aqueous medium via Knoevenagel condensation followed by Michael addition. Green Chem 13:2135–2145. https://doi.org/10.1039/c1gc15244k

    Article  CAS  Google Scholar 

  20. Saneinezhad S, Mohammadi L, Zadsirjan V, Bamoharram FF, Heravi MM (2020) Silver nanoparticles-decorated Preyssler functionalized cellulose biocomposite as a novel and efficient catalyst for the synthesis of 2-amino-4H-pyrans and spirochromenes. Sci Rep 10:1–26. https://doi.org/10.1038/s41598-020-70738-z

    Article  CAS  Google Scholar 

  21. Kargar PG, Bagherzade G, Eshghi H (2020) Novel biocompatible core/shell Fe3O4@NFC@Co(ii) as a new catalyst in a multicomponent reaction: an efficient and sustainable methodology and novel reusable material for one-pot synthesis of 4: H -pyran and pyranopyrazole in aqueous media. RSC Adv 10:37086–37097. https://doi.org/10.1039/d0ra04698a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang LS, Hu X, Yu YQ, Xu DZ (2017) Highly efficient heterogeneous catalytic synthesis of densely functionalized 2-amino-4H-pyrans under mild condition in aqueous media. ChemistrySelect 2:11790–11794. https://doi.org/10.1002/slct.201702411

    Article  CAS  Google Scholar 

  23. Bihani M, Bora PP, Bez G, Askari H (2013) Amberlyst A21 catalyzed chromatography-free method for multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles in ethanol. ACS Sustain Chem Eng 1:440–447

    Article  CAS  Google Scholar 

  24. Niknam K, Borazjani N, Rashidian R, Jamali A (2013) Silica-bonded N-propylpiperazine sodium n-propionate as recyclable catalyst for synthesis of 4H-pyran derivatives. Chin J Catal 34:2245–2254. https://doi.org/10.1016/S1872-2067(12)60693-7

    Article  CAS  Google Scholar 

  25. Meena ML, Kumar K, Saini P, Sethi M, Saini S, Mohapatra A, Som S, Lin RY, Chu CW, Lu CH, Lin SD, Parewa V (2023) Competent production of hydrogen and hydrogenation of carboxylic acids using urea-rich waste water over visible-light-responsive rare earth doped photocatalyst. J Taiwan Inst Chem Eng 144:104734. https://doi.org/10.1016/j.jtice.2023.104734

    Article  CAS  Google Scholar 

  26. Maleki B, Nasiri N, Tayebee R, Khojastehnezhad A, Akhlaghi HA (2016) Green synthesis of tetrahydrobenzo[b] pyrans, pyrano[2,3-c] pyrazoles and spiro[indoline-3,4′-pyrano[2,3-c] pyrazoles catalyzed by nano-structured diphosphate in water. RSC Adv 6:79128–79134. https://doi.org/10.1039/c6ra15800e

    Article  CAS  Google Scholar 

  27. Achagar R, Elmakssoudi A, Dakir M, Elamrani A, Zouheir Y, Zahouily M, Jamaleddine J (2021) A green and efficient protocol for the synthesis of phenylhydrazone derivatives catalyzed by nanostructured diphosphate Na2CaP2O7 and screening of their antibacterial activity. Chem Sel 6:1366–1371. https://doi.org/10.1002/slct.202004671

    Article  CAS  Google Scholar 

  28. Mittal N, Nisola GM, Malihan LB, Seo JG, Kim H, Lee SP, Chung WJ (2016) One-pot synthesis of 2,5-diformylfuran from fructose using a magnetic bi-functional catalyst. RSC Adv 6:25678–25688. https://doi.org/10.1039/c6ra01549b

    Article  CAS  Google Scholar 

  29. Hayashi Y (2016) Pot economy and one-pot synthesis. Chem Sci 7:866–880. https://doi.org/10.1039/c5sc02913a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bennazha J, Boukhari A, Holt EM (1999) Synthesis and crystal structure of Na2CaP2O7. Solid State Sci 6:373–380

    Article  Google Scholar 

  31. Elmakssoudi A, Abdelouahdi K, Zahouily M, Clark J, Solhy A (2012) Efficient conversion of aldehydes and ketones into oximes using a nanostructured pyrophosphate catalyst in a solvent-free process. Catal Commun 29:53–57. https://doi.org/10.1016/j.catcom.2012.09.017

    Article  CAS  Google Scholar 

  32. Wani JA, Dhoble NS, Kokode NS, Dhoble SJ (2014) Synthesis and photoluminescence property of RE3+ activated Na2CaP2O7 phosphor. Adv Mater Lett 5:459–464. https://doi.org/10.5185/amlett.2014.amwc.1211

    Article  CAS  Google Scholar 

  33. Achagar R, Elmakssoudi A, Thoume A, Dakir M, Elamrani A, Zouheir Y, Zahouily M, Ait-Touchente Z, Jamaleddine J, Chehimi MM (2022) Nanostructured Na2CaP2O7: a new and efficient catalyst for one-pot synthesis of 2-amino-3-cyanopyridine derivatives and evaluation of their antibacterial activity. Appl Sci 12:5487. https://doi.org/10.3390/app12115487

    Article  CAS  Google Scholar 

  34. Sharma S, Ahmad H, Siqueiros JM, Raymond O (2022) Stability of rhombohedral structure and improved dielectric and ferroelectric properties of Ba, Na, Ti doped BiFeO3 solid solutions. Ceram Int 48:1805–1813. https://doi.org/10.1016/j.ceramint.2021.09.261

    Article  CAS  Google Scholar 

  35. Sherwood PMA (2002) Introduction to studies of phosphorus-oxygen compounds by XPS. Surf Sci Spectra 9:62–66. https://doi.org/10.1116/11.20030101

    Article  CAS  Google Scholar 

  36. Molla A, Hossain E, Hussain S (2013) Multicomponent domino reactions: borax catalyzed synthesis of highly functionalised pyran-annulated heterocycles. RSC Adv 3:21517–21523. https://doi.org/10.1039/c3ra43514h

    Article  CAS  Google Scholar 

  37. Kolvari E, Koukabi N, Ozmaei Z, Khoshkho H, Seidi F (2022) Synthesis of 2-amino-4H-pyran and 2-benzylidene malononitrile derivatives using a basil seed as a cheap, natural, and biodegradable catalyst. Curr Res Green Sustain Chem 5:100327. https://doi.org/10.1016/j.crgsc.2022.100327

    Article  CAS  Google Scholar 

  38. Maleki A, Varzi Z, Hassanzadeh-Afruzi F (2019) Preparation and characterization of an eco-friendly ZnFe2O4@alginic acid nanocomposite catalyst and its application in the synthesis of 2-amino-3-cyano-4H-pyran derivatives. Polyhedron 171:193–202. https://doi.org/10.1016/j.poly.2019.07.016

    Article  CAS  Google Scholar 

  39. Marahatta AB (2021) Chemical energetics and atomic charges distribution of variably sized hydrated sulfate clusters in the light of density functional theory. Int J Progress Sci Technol 25:595. https://doi.org/10.52155/ijpsat.v25.1.2690

    Article  Google Scholar 

  40. Elmakssoudi A, Zahouily M, Mezdar A, Rayadh A, Sebti S (2005) Na2CaP2O7 a new catalyst for the synthesis of α-amino phosphonates under solvent-free conditions at room temperature. Comptes Rendus Chim 8:1954–1959. https://doi.org/10.1016/j.crci.2005.05.006

    Article  CAS  Google Scholar 

  41. Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, Arimondo PB, Glaser P, Aigle B, Bode HB, Moreira R, Li Y, Luzhetskyy A, Medema MH, Pernodet JL, Stadler M, Tormo JR, Genilloud O, Truman AW, Weissman KJ, Takano E, Sabatini S, Stegmann E, Brötz-Oesterhelt H, Wohlleben W, Seemann M, Empting M, Hirsch AKH, Loretz B, Lehr CM, Titz A, Herrmann J, Jaeger T, Alt S, Hesterkamp T, Winterhalter M, Schiefer A, Pfarr K, Hoerauf A, Graz H, Graz M, Lindvall M, Ramurthy S, Karlén A, van Dongen M, Petkovic H, Keller A, Peyrane F, Donadio S, Fraisse L, Piddock LJV, Gilbert IH, Moser HE, Müller R (2021) Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 5:726–749. https://doi.org/10.1038/s41570-021-00313-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bernatová S, Samek O, Pilát Z, Šerý M, Ježek J, Jákl P, Šiler M, Krzyžánek V, Zemánek P, Holá V, Dvorácková M, Ružicka F (2013) Following the mechanisms of bacteriostatic versus bactericidal action using raman spectroscopy. Molecules 18:13188–13199. https://doi.org/10.3390/molecules181113188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown D (2015) Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 14:821–832. https://doi.org/10.1038/nrd4675

    Article  CAS  PubMed  Google Scholar 

  44. Lacy MK, Nicolau DP, Nightingale CH, Quintiliani R (1998) The pharmacodynamics of aminoglycosides. Clin Infect Dis 27:23–27. https://doi.org/10.1086/514620

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support from the National Center for Scientific and Technical Research (CNRST) is gratefully acknowledged. This work was also supported by University Hassan II of Casablanca, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Redouane Achagar or Abdelhakim Elmakssoudi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Informed consent

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1639 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achagar, R., Elmakssoudi, A., Thoume, A. et al. Exploration of Na2CaP2O7 as a Nanocatalyst for Eco-conscious Synthesis of 4H-Pyran Derivatives: Computational Examination Utilizing DFT and Docking Techniques. Chemistry Africa 7, 1829–1848 (2024). https://doi.org/10.1007/s42250-024-00883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-024-00883-9

Keywords

Navigation