Skip to main content
Log in

rGO Embedded PbS/NiO Hybrid Nanocomposite for Effective Dye Deactivation Against Methyl Violet and Growth Inhibition Against B. subtilis and P. aeruginosa Bacteria

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In recent decades, global energy concern had shifted to find alternate energy resources for fossil fuels and develop ecological energy storage devices. Food, paper and leather industries cause water pollution which should be degraded properly. Pathogen contamination is also a serious issue for almost all sorts of ambient water bodies that can be fatal to human beings. To cope with all these issues, new nanocomposites are utilized. One such composite has been synthesized in this work. Using Centella asiatica leaf extract, a ternary photocatalyst of PbS/NiO (PN) heterojunction decorated with reduced graphene oxide (rGO) was fabricated. This study compared the electrochemical, photocatalytic, and antibacterial properties of the rGO-PbS/NiO (rPN) nanocomposite (NC) with those of the PN NC synthesized by chemical precipitation method. NiO and PbS show cubic structured peaks from XRD patterns. EDS spectrum of rGO-PbS/NiO NC reveals Pb, S, Ni, O, and C. PN and rPN composites had Eg values of 2.31 and 2.27 eV, respectively. The increased PL intensity observed for the rPN composite may result from passivation of surface vacancies and non-radiative recombination sites. The Raman spectrum of rPN has bands associated with Pb–S, Ni–O, and rGO. The stacking of rGO provides less hindered paths for the adsorption of methyl violet dye and thus improves the degradation efficiency of the PN catalyst from 85 to 95%. Higher degradation rate constant value (0.0386 min−1) observed for the rPN catalyst compared to that of the PN catalyst (0.0197 min−1) confirmed its higher degradation capability. The rGO-PbS/NiO NC exhibited better electrochemical and antibacterial properties. A ternary composite involving rGO and PbS/NiO is very scarce and the results obtained in this work will attract researchers working with rGO embedded systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Suganya M, Balu AR (2017) Mater Sci-Pol 35:322–328

    CAS  Google Scholar 

  2. Rajashree C, Balu AR, Nagarethinam VS (2015) Surf Engg 31:316–321

    CAS  Google Scholar 

  3. Ahmed AM, Rabia M, Shaban M (2020) RSV Adv 10:14458–14470

    CAS  Google Scholar 

  4. Maskeva LN, Markov VF, Mostovschchikova EV, Voronin VI, Pozdin AV, Santra S (2018) J Alloys Compd 766:401–409

    Google Scholar 

  5. Dai WX, Zhang L, Zhao WW, Yu XD, Xu JJ, Chen HY (2017) Anal Chem 89:8070–8078

    CAS  PubMed  Google Scholar 

  6. Ingrosso C, Velenzano V, Corricelli M, Testolin A, Pifferi V, Bianco GV, Comparelli R, Depalo N, Fanizza E, Striccoli M, Agostiano A, Palchetti I, Falciola L, Curri ML (2021) Carbon 182:57–69

    CAS  Google Scholar 

  7. Li J, Chen Z, Yu J, Zhang J, Chen B, Wu L, Zhou S, Rao Y, Cao J (2022) Preparation of lead sulfide-lead carbon black composites by microwave method to improve the electrical properties from recycled lead powder. J Energy Storage. https://doi.org/10.1016/j.est.2022.104962

    Article  Google Scholar 

  8. Mun CH, Gopi CVVM, Vinodh R, Sambasivam S, Obaidat IB, Kim HJ (2019) Microflower-like nickel sulfide-lead sulfide hierarchical composites as binder-free electrodes for high-performance supercapacitors. J Energy Storage. https://doi.org/10.1016/j.est.2019.100925

    Article  Google Scholar 

  9. Durga IK, Srinivasa Rao S, Ahn JW, Park TY, Soo BJ, Ho CI, Prabakar K, Kim HJ (2018) Dice-like nanostructure of a CuS@PbS composite for high-performance supercapacitor electrode applications. Energies. https://doi.org/10.3390/en11071624

    Article  Google Scholar 

  10. Chen H, Yang J, Chen H, Lu L (2019) Energy Explor Exploit 37:1477–1486

    CAS  Google Scholar 

  11. Suganya M, Prabha D, Anitha S, Srivind J, Balamurugan S, Nagarethinam VS, Balu AR (2017) J Mater Sci Mater Electron 28:12348–12355

    CAS  Google Scholar 

  12. Suganya M, Balu AR, Prabha D, Anitha S, Balamurugan S, Srivind J (2018) J Mater Sci Mater Electron 29:1065–1074

    CAS  Google Scholar 

  13. Sadhukhan S, Bhattacharya A, Rana D, Ghosh TK, Orasugh JT, Khatua S, Acharaya K, Chattopadhyay D (2020) Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.122906

    Article  Google Scholar 

  14. Wei SY, Lecce DD, Brescia R, Pugliese G, Shearing PR, Hassoun J (2020) Electrochemical behavior of nanostructured NiO@C anode in a lithium-ion battery using LiNi1/3Co1/3Mn1/3O2 cathode. J Alloys Compnd. https://doi.org/10.1016/j.jallcom.2020.155365

    Article  Google Scholar 

  15. Ganesh V, Haritha L, Shkir M, Yahia IS, Singh A, Alfaity S (2018) Sol State Sci 86:98–106

    CAS  Google Scholar 

  16. Suganya M, Balu AR, Anitha S, Prabha D, Balamurugan S, Priyanka B, Srivind J, Nagarethinam VS (2018) Mater Sci Eng B 229:118–125

    CAS  Google Scholar 

  17. Liu S, Liu L, Du Q, Ma Z, Fu Y, Zhao Y, Li X, Zhao X (2020) J New Mater Electrochem Sys 23:7–12

    CAS  Google Scholar 

  18. Dai WX, Zhang L, Zhao WW, Yu XD, Xu JJ, Chen HY (2017) Anal Chem 89:8070–8078

    CAS  PubMed  Google Scholar 

  19. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) Nanoscale 3:20–30

    CAS  PubMed  Google Scholar 

  20. Zhu XJ, Hu J, Dai HI, Ding L, Jiang L (2012) Electrochim Acta 64:23–28

    CAS  Google Scholar 

  21. Zhang D, Chang H, Li P, Liu R (2016) J Mater Sci Mater Electron 27:3723–3730

    CAS  Google Scholar 

  22. Bai S, Sun X, Han N, Shu X, Pan J, Guo H, Liu S, Feng Y, Luo R, Li D, Chen A (2020) rGO modified nanoplate-assembled ZnO/CdO junction for detection of NO2. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121832

    Article  PubMed  Google Scholar 

  23. Nethravathi PC, Manjula MV, Devaraja S, Suresh D (2022) Ag and BiVO4 decorated reduced graphene oxide: a potential nano hybrid material for photocatalytic, sensing and biomedical applications. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2022.109327

    Article  Google Scholar 

  24. Kumar S, Kaushik RD, Purotit LP (2023) J Coll Inter Su 632:196–215

    CAS  Google Scholar 

  25. Arunpandiyan S, Raja A, Bharathi S, Arivarasan A (2021) Fabrication of ZnO/NiO:rGO coated Ni foam binder-free electrode via hydrothermal method for supercapacitor application. J Alloys Compnd. https://doi.org/10.1016/j.jallcom.2021.160791

    Article  Google Scholar 

  26. Gamdeze NP, Mthiyane DMN, Mavengahama S, Singh M, Onwudiwe DC (2023) Biosynthesis of ZnO nanoparticles using the aqueous extract of Mucuna pruriens (utilis): structural characterization, and the anticancer and antioxidant activities. Chem Africa. https://doi.org/10.1007/s42250-023-00750-z

    Article  Google Scholar 

  27. Wei XN, Ou CL, Guan XX, Peng ZK, Zheng XC (2019) Appl Surf Sci 464:666–673

    Google Scholar 

  28. Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Adv Funct Mater 20:4175–4181

    CAS  Google Scholar 

  29. Mallik AR, Sharif S, Shaheen F, Khalid M, Iqbal Y, Faisal A, Aziz MH, Atif M, Ahmad S, Alam MF, Hossain N, Ahmad H, Botmart T (2022) Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2022.101438

    Article  Google Scholar 

  30. Yuan YJ, Chen DQ, Shi XF, Tu JR, Hu B, Yang LX, Yu ZT, Zou ZG (2017) Chem Eng J 313:1438–1446

    CAS  Google Scholar 

  31. Samiyammal P, Parasuraman K, Balu AR (2019) Superlattices Microstruct 129:28–39

    CAS  Google Scholar 

  32. Ozer T, Akksay S, Kose S (2010) Mater Sci Semicond 13:325–328

    CAS  Google Scholar 

  33. Fu X, Zhang Y, Cao P, Ma H, Liu P, He L, Peng J, Li J, Zhai M (2016) Rad Phys Chem 123:79–86

    CAS  Google Scholar 

  34. Prabha D, Usharani K, Ilangoven S, Suganya M, Balamurugan S, Srivind J, Nagarethinam VS, Balu AR (2018) Mater Technol 33:333–339

    CAS  Google Scholar 

  35. Suganya M, Balu AR, Balamurugan S, Narasimman V, Manjula N, Rajashree C, Nagarethinam VS (2018) Surf Interfaces 13:148–156

    CAS  Google Scholar 

  36. Ravishanker S, Balu AR, Balamurugan S, Usharani K, Prabha D, Suganya M, Nagarethinam VS (2018) J Mater Sci Mater Electron 29:6051–6058

    Google Scholar 

  37. Balamurugan S, Balu AR, Narasimman V, Selvam G, Usharani K, Suganya M, Manjula N, Rajashree C, Nagarethinam VS (2019) Mater Res Exp 6:015022–015031

    Google Scholar 

  38. Nallendran R, Selvan G, Balu AR (2018) Mater Electron 29:11384–11393

    CAS  Google Scholar 

  39. Ceril Jeoffrey A, Jothi Ramalingam S, Murugaiah K, Balu AR (2023) Highly photoactive rGO-MnO2/CuO nanocomposite photocatalyst for the removal of metanil yellow dye and bacterial resistance against Pseudomonas aeruginosa. Chem Phys Impact. https://doi.org/10.1016/j.chphi.2023.100246

    Article  Google Scholar 

  40. Rajashree C, Balu AR, Nagarethinam VS (2016) J Mater Sci Mater Electron 27:5070–5078

    CAS  Google Scholar 

  41. Selvan G, Abubacker MP, Balu AR (2017) J Mater Sci Mater Electron 28:2335–2342

    CAS  Google Scholar 

  42. Balamurugan S, Balu AR, Usharani K, Suganya M, Anitha S, Prabha D, Ilagovan S (2016) Pac Sci Rev 18:228–232

    Google Scholar 

  43. Ravishankar S, Balu AR, Nagarethinam VS (2018) J Electron Mater 47:1271–1278

    CAS  Google Scholar 

  44. Ravishankar S, Balu AR, Usharani K, Balamurugan S, Prabha D, Nagarethinam VS (2017) Optik 134:121–127

    CAS  Google Scholar 

  45. Smith GD, Firth S, Clark RJH, Cardona M (2002) J Appl Phys 92:4375–4380

    CAS  Google Scholar 

  46. Lu ML, Lin TY, Weng TM, Chen YF (2011) Opt Exp 19:16266–16272

    CAS  Google Scholar 

  47. Khanra P, Kuila T, Kim NH, Bae SH, Yu DS, Lee JH (2012) Chem Eng J 183:526–533

    CAS  Google Scholar 

  48. Palem RR, Ramesh S, Bathula C, Kakani V, Saratale GD, Yadav HM, Kim JH, Kim HS, Lee SH (2021) Ceram Int 47:26738–26747

    CAS  Google Scholar 

  49. Kumar R, Matsuo R, Kishida K, Abdel-Galeil MM, Suda Y, Matsuda A (2019) Electrochem Acta 303:246–256

    CAS  Google Scholar 

  50. Shanmugapriya V, Arunpandiyan S, Hariharan G, Bharathi S, Selvakumar B, Arivarasan A (2023) Enhanced supercapacitor performance of ZnO/SnO2:rGO nanocomposites under redox additive electrolyte. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.167994

    Article  Google Scholar 

  51. Lin Y-C, Du Tsai C, Chang ZC, Shieu FS (2018) Appl Surf Sci 440:1227–1234

    CAS  Google Scholar 

  52. Balamurugan S, Balu AR, Srivind J, Usharani K, Narasimman V, Suganya M, Nagarethinam VS (2019) Vacuum 159:9–16

    CAS  Google Scholar 

  53. Sharma S, Kumar K, Thakur N, Chauhan S, Chauhan M (2020) Bull Mater Sci 43:1–10

    Google Scholar 

  54. Brunet L, Lyon DY, Horze EM, Alvarez PJ, Weisner MR (2009) J Environ Sci 43:4355–4360

    CAS  Google Scholar 

  55. Dat NM, Thinh DB, Huong LM, Tinh NT, Linch NTT, Hai ND, Viet ND, Dat NT, Phong MT, Hieu NH (2022) Facile synthesis and antibacterial activity of silver nanoparticles-modified graphene oxide hybrid material: the assessment, utilization, and anti-virus potentiality. Mater Today Chem. https://doi.org/10.1016/j.mtchem.2021.100738

    Article  Google Scholar 

  56. Cacaci M, Martini C, Guarino C, Torelli R, Bugli F, Sanguinetti M (2020) Springer Sci Rev 1282:21–35

    CAS  Google Scholar 

  57. Burello E, Worth AP (2011) J Nanotoxicol 5:228–235

    CAS  Google Scholar 

  58. Mata R, Bhaskaran A, Sadras SR (2016) Particuology 24:78–86

    CAS  Google Scholar 

  59. Fu G, Vary PS, Lin CT (2005) J Phys Chem B 109:8889–8898

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr. Vincent of St. Joseph’s College, Trichy conducted an excellent CV study for us.

Funding

No fund, grants or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ARB; Methodology: CR; Formal analysis and investigation: SA, MS; Writing: original draft preparation: SCD; Writing: review and editing: ARB; Funding acquisition: KD. Interpretation of data: CR. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to A. R. Balu.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajashree, C., Balu, A.R., Devi, S.C. et al. rGO Embedded PbS/NiO Hybrid Nanocomposite for Effective Dye Deactivation Against Methyl Violet and Growth Inhibition Against B. subtilis and P. aeruginosa Bacteria. Chemistry Africa 7, 1453–1465 (2024). https://doi.org/10.1007/s42250-023-00850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00850-w

Keywords

Navigation