Skip to main content
Log in

Microwave Assist Synthesis of Na-zeolite/Hydroxysodalite from a Kaolin: Effect of the Microwave Power

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

A Correction to this article was published on 22 August 2023

This article has been updated

Abstract

This work reports the effect of the microwave power on the synthesis of Na-zeolite and / or hydroxysodalite from a natural kaolinite. The kaolin was fired in a muffle furnace for 1 h at 650 ° C and the obtained metakaolin was dispersed in 8 N sodium hydroxide solution for a microwave assist hydrothermal synthesis of zeolites. The products were analyzed using powder X-ray diffraction (XRD), Fourier Transform Infrared(FTIR) and Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM). XRD patterns and FTIR spectra evidenced the formation of new phases identified as type A Na-Zeolite and hydroxysodalite. The type A Na-Zeolite is formed under the application of microwave of power less than 320 W and beyond this power hydroxysodalite is the dominant phase. DSC curves show an increase in the hydration water, which is associated to an increase in the porosity that favors water uptake. SEM observations show obvious morphological changes that are in line with the conversion of the starting metakaolin into zeolitic phases. It is evidenced that, for a fixed application time, the structure of the zeolitic material formed is dependent on the power of the microwave used. Under the time condition used here (10 min), energies between 160 and 320 W, favored the formation of Na-zeolite while the formation of hydroxysodalite is favored for energies greater than 320 W.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Yit Siew Ng T, Leng Chew T, Fong Yeong Y (2019) Synthesis of small pore zeolite via ultrasonic- assisted hydrothermal synthesis. Mater Today Proc 16:1935–1941. https://doi.org/10.1016/j.matpr.2019.06.071

    Article  CAS  Google Scholar 

  2. Shamzhy M, Opanasenko M, Concepcion P, Martinez A (2019) New trends in tailoring the active sites in zeolite-based catalysts. Chem Soc Rev 48:1095–1149. https://doi.org/10.1039/C8CS00887F

    Article  CAS  PubMed  Google Scholar 

  3. Kianfar E, Hajimirzaee S, Mousavian S, Mehr AS (2020) Zeolite-based catalysts for methanol to gasoline process: a review. Microchem J 156:104822. https://doi.org/10.1016/j.microc.2020.104822

    Article  CAS  Google Scholar 

  4. Xinga S, Liua K, Wanga T, Zhanga R, Han M (2021) Elucidation of the mechanism and structure–reactivity relationship in zeolite catalyzed alkylation of benzene with propylene. Catal Sci Technol 11:2792–2804. https://doi.org/10.1039/D0CY02374D

    Article  Google Scholar 

  5. Binay MI, Kirdeciler SK, Akata B (2019) Development of antibacterial powder coatings using single and binary ion-exchanged zeolite A prepared from local kaolin. Appl Clay Sci 182:105251

    Article  CAS  Google Scholar 

  6. Ziejewska C, Grela A, Łach M, Marczyk J, Hordyńska N, Szechyńska-Hebda M, Hebda M (2023) Eco-friendly zeolites for innovative purification of water from cationic dye and heavy metal ions. J Clean Prod 406:136947. https://doi.org/10.1016/j.jclepro.2023.136947

    Article  CAS  Google Scholar 

  7. de Magalhães LF, da Silva GR, Peres AEC (2022) Zeolite Application in Wastewater Treatment. Adsorpt Sci Technol 2022:4544104. https://doi.org/10.1155/2022/4544104

    Article  CAS  Google Scholar 

  8. Tanaka H, Fujii A (2009) Effet of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and x-zeolites by two-step process. Adv Powder Technol 20:473–479. https://doi.org/10.1016/j.apt.2009.05.004

    Article  CAS  Google Scholar 

  9. Machado NRCF, Miotto DMM (2005) Synthesis of Na–A and–X zeolites from oil shale ash. Fuel 84:2289–2294. https://doi.org/10.1016/j.fuel.2005.05.003

    Article  CAS  Google Scholar 

  10. Colina FG, Llorens J (2007) Study of the dissolution of dealuminated kaolin in sodium-potassium hydroxide during the gel formation step in zeolite X synthesis. Micro Meso Mater 100:302–311. https://doi.org/10.1016/j.micromeso.2006.11.013

    Article  CAS  Google Scholar 

  11. Kazemian H, Naghdali Z, Kashani TG, Farhadi F (2010) Conversion of high silicon fly ash to Na-P1 zeolite: alkaline fusion followed by hydrothermal crystallization. Adv Powder Technol 21:279–283. https://doi.org/10.1016/j.apt.2009.12.005

    Article  CAS  Google Scholar 

  12. Prasetyoko D, Ramli Z, Endud S, Hamdan H, Sulikowski B (2006) Conversion of rice husk ash to zeolite beta. Waste Manag 26:1173–1179. https://doi.org/10.1016/j.wasman.2005.09.009

    Article  CAS  PubMed  Google Scholar 

  13. Katsuki H, Furuta S, Watari T, Komarneni S (2005) ZSM-5 zeolite/porous carbon composite: conventional-and microwave-hydrothermal synthesis from carbonized rice husk. Micro Meso Mater 86:145–151. https://doi.org/10.1016/j.micromeso.2005.07.010

    Article  CAS  Google Scholar 

  14. Chareonpanich M, Namto T, Kongkachuichay P, Limtrakul J (2004) Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash. Fuel Process Technol 85:1623–1634. https://doi.org/10.1016/j.fuproc.2003.10.026

    Article  CAS  Google Scholar 

  15. Tanaka H, Furusawa S, Hino R (2002) Synthesis, characterization, and formation process of Na-X zeolite from coal fly Ash. J Mater Synth Process 10:143–148. https://doi.org/10.1023/A:1021938729996

    Article  CAS  Google Scholar 

  16. Moisés MP, da Silva CTP, Meneguin JG, Girotto EM, Radovanovic E (2013) Synthesis of zeolite NaA from sugarcane bagasse ash. Mater Lett 108:243–246. https://doi.org/10.1016/j.matlet.2013.06.086

    Article  CAS  Google Scholar 

  17. Purnomo CW, Salim C, Hinode H (2012) Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash. Microporous Mesoporous Mater 162:6–13. https://doi.org/10.1016/j.micromeso.2012.06.007

    Article  CAS  Google Scholar 

  18. Abdullahi T, Harun Z, Othman MHD (2017) A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Adv Powder Technol 28:1827–1840. https://doi.org/10.1016/j.apt.2017.04.028

    Article  CAS  Google Scholar 

  19. Collins F, Rozhkovskaya A, Outram JG, Gr M (2020) A critical review of waste resources, synthesis, and applications for Zeolite LTA. Micro Meso Mater 291:109667. https://doi.org/10.1016/j.micromeso.2019.109667

    Article  CAS  Google Scholar 

  20. Johnson E, Arshad SE (2014) Hydrothermally synthesized zeolites based on kaolinite: a review. Appl Clay Sci 97:215–221. https://doi.org/10.1016/j.clay.2014.06.005

    Article  CAS  Google Scholar 

  21. Belviso C, Cavalcante A, Lettino A, Fiore S (2013) A and X-type zeolites synthesised from kaolinite at low temperature. Appl Clay Sci 80–81:162–168. https://doi.org/10.1016/j.clay.2013.02.003

    Article  CAS  Google Scholar 

  22. Youssef H, Ibrahim D, Komarneni S (2008) Microwave-assisted versus conventional synthesis of zeolite A from metakaolinite. Micro Meso Mater 115:527–534. https://doi.org/10.1016/j.micromeso.2008.02.030

    Article  CAS  Google Scholar 

  23. Otieno SO, Kengara FO, Kemmegne-Mbouguen JC, Lagmi HW, Kowenje CBO, et Mokava R (2019) The effects of metakaolinization and fused-metakaolinization on zeolites synthesized from quartz rich natural clays. Micro Meso Mater 290:109668. https://doi.org/10.1016/j.micromeso.2019.109668

    Article  CAS  Google Scholar 

  24. Ahmed HA, Elbanna SA, Khalil R, Tayel A, El Basaty AB (2022) Ultrasonic-assisted hydrothermal synthesis of zeolite Y adsorbent from natural kaolin for the recycling of waste engine oil. Egypt J Chem 65:151–160

    Google Scholar 

  25. Katsuki H, Furuta S, Komarneni S (2001) Microwave versus conventional-hydrothermal synthesis of NaY Zeolite. J Porous Mater 8:5–12. https://doi.org/10.1023/A:1026583832734

    Article  CAS  Google Scholar 

  26. Njoya A, Nkoumbou C, Grosbois C, Njopwouo D, Njoya D, Courtin-Nomade A, Yvon J, Martin F (2006) Genesis of Mayouom kaolin deposit (western Cameroon). Appl Clay Sci 32:125–140. https://doi.org/10.1016/j.clay.2005.11.005

    Article  CAS  Google Scholar 

  27. Tchakoute Kouamo H, Mbey JA, Elimbi A, Kenne Diffo BB, Njopwouo D (2013) Synthesis of volcanic ash-based geopolymer mortars by fusion method: effects of adding metakaolin to fused volcanic ash. Ceram Int 39:1613–1621. https://doi.org/10.1016/j.ceramint.2012.08.003

    Article  CAS  Google Scholar 

  28. Mbey JA, Hoppe S, Thomas F (2015) Cassava starch-kaolinite composite films. Thermal and mechanical properties related to filler-matrix interactions. Polym Compos 36(1):184–191. https://doi.org/10.1002/pc.22928

    Article  CAS  Google Scholar 

  29. Mbey JA, Thomas F, Ngally Sabouang CJ, Liboum Njopwouo D (2013) An insight on the weakening of the interlayer bonds in a cameroonian kaolinite through DMSO intercalation. Appl Clay Sci. https://doi.org/10.1016/j.clay.2013.08.010

    Article  Google Scholar 

  30. Mbey JA, Hoppe S, Thomas F (2012) Cassava starch-kaolinite composite film. Effect of clay content and clay modification on film properties. Carbohydr Polym 88(1):213–222. https://doi.org/10.1016/j.carbpol.2011.11.091

    Article  CAS  Google Scholar 

  31. Gougazeh M, Buhl J-Ch (2014) Synthesis and characterization of zeolite A by hydrothermal transformation of natural jordanian kaolin. J Assoc Arab Univ Basic Appl Sci 15:35–42. https://doi.org/10.1016/j.jaubas.2013.03.007

    Article  Google Scholar 

  32. Khatamian M, Irani M (2009) Preparation and characterization of nanosized ZSM-5 zeolite using kaolin and investigation of kaolin content, crystallization time and temperature changes on the size and crystallinity of products. J Iran Chem Soc 6:187–194. https://doi.org/10.1007/BF03246519

    Article  CAS  Google Scholar 

  33. Cui Y, Zheng Y, Wang W (2018) Synthesis of 4A Zeolite from kaolinite-type pyrite flotation tailings (KPFT). Minerals 8:338. https://doi.org/10.3390/min8080338

    Article  CAS  Google Scholar 

  34. Lahnafi A, Elgamouz A, Jaber L, Tijani N, Kawde A-N (2023) NaA zeolite-clay composite membrane formulation and its use as cost-effective water softener. Micro Meso Mater 348:112339. https://doi.org/10.1016/j.micromeso.2022.112339

    Article  CAS  Google Scholar 

  35. Loiola AR, Andrade JCRA, Sasaki JM, da Silva LRD (2012) Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener. J Colloid Inter Sci 367:34–39. https://doi.org/10.1016/j.jcis.2010.11.026

    Article  CAS  Google Scholar 

  36. Cecilia JA, Vilarrasa-García E, Morales-Ospino R, Finocchio E, Busca G, Sapag K, Villarroel-Rocha J, Bastos-Neto M, Azevedo DCS, Rodríguez-Castellón E (2022) Kaolinite-based zeolites synthesis and their application in CO2 capture processes. Fuel. https://doi.org/10.1016/j.fuel.2022.123953

    Article  Google Scholar 

  37. Singh J, White RL (2019) A variable temperature infrared spectroscopy study of CaA zeolite dehydration and carbonate formation. Spectrochim Acta A Mol Biomol Spectrosc 207:189–196. https://doi.org/10.1016/j.saa.2018.09.027

    Article  CAS  PubMed  Google Scholar 

  38. Peng H, Qi T, Vogrin J, Huang Q, Wu W, Vaughan J (2021) The effect of leaching temperature on kaolinite and meta-kaolin dissolution and zeolite re-precipitation. Min Eng 170:107071. https://doi.org/10.1016/j.mineng.2021.107071

    Article  CAS  Google Scholar 

  39. Heller-Kallai L (2006) Thermally modified clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Elsevier, Amtersdam, pp 289–308

    Chapter  Google Scholar 

  40. Mozgawa W, Król M, Mikula A, Pichór W (2014) Study of zeolite-like sorption materials obtained from expanded perlite waste, 5th International Conference on Engineering for Waste and Biomass Valorisation - August 25–28, 2014 - Rio De Janeiro, Brazil study

Download references

Acknowledgements

The authors are grateful to the Cameroon Government for the special research allowance to Researcher Staffs of State Universities; The Polytechnic University of Man in Ivory Coast is acknowledged for the SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Aimé Mbey.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The author name Jean Aimé Mbey was incorrectly written as Jean Aimé Meby.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwimi Tchatat, P., Ngally Sabouang, C.J., Mache, J.R. et al. Microwave Assist Synthesis of Na-zeolite/Hydroxysodalite from a Kaolin: Effect of the Microwave Power. Chemistry Africa 7, 273–280 (2024). https://doi.org/10.1007/s42250-023-00745-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00745-w

Keywords

Navigation