Skip to main content

Advertisement

Log in

Comparative Production and Optimisation of Furfural and Furfuryl Alcohol from Agricultural Wastes

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Present-day environmental pollution caused by the usage of synthetic organic compounds derived from fossil sources is a major concern. In substitute of fossil-based chemicals, alternative feedstock materials are being sourced. Furfural (F) and furfuryl alcohol (FA) are valuable platform chemicals obtained from biomass that serve as a link between biomass raw materials and the bio-refinery sector and are used as building blocks in the development of several chemicals and fuels. The syntheses of FA from biomass-derived F via selective hydrogenation are difficult, expensive and involve the use of critical elements. In this study, an easy comparison method for producing furfural is presented. Furfural is subsequently transformed into FA using a simple sodium hydroxide hydrogenation process, which is regarded as a reliable, inexpensive, and accessible catalyst. The production protocols for F and FA were optimized. The findings showed that furfural synthesis was improved by increasing sulfuric acid concentration, duration, and temperature at constant biomass weight. Maize cob (7.2%) produced the highest amount of furfural, followed by elephant grass (3.2%), sunflower, and baobab pulp (2.3%) when sulfuric acid (20%) was used in a 1:20 ratio to biomass weight, at 160 °C, for 160 min. The optimization of the maize cob's maturity stages was done in light of this conclusion. The maize cob that had reached maturity (8th week) had the highest furfural yield (35.20%). By lengthening the reaction time, raising the temperature to 10 °C, and increasing the NaOH content, FA synthesis was improved. At 10 °C, less FA was recovered at 50 °C, the maximum FA yield (64%) was obtained in this study. As a result, this study generated FA by a straightforward sodium hydroxide hydrogenation of furfural using a safe, affordable, and easily accessible feedstock and catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The authors attest that this study’s supporting data are contained in the publication and its supplemental materials, which are available on subcription to the journal of Chemistry Africa.

References

  1. YingyingX XL, Haixin G, Mo Q, Xinhua Q (2023) Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol over Zr-doped ordered mesoporous carbon synthesized by Zr-arbutin coordinated self-assembly. Fuel 331:125834

    Article  Google Scholar 

  2. Rodiansono MD, Astuti KM, Sadang H, Fathur RA, Takayoshi H, Shogo S (2022) Unravelling the one-pot conversion of biomass derived furfural and levulinic acid to 1,4-pentanediol catalysed by supported RANEY® Ni–Sn alloy catalysts. RSC Adv 12:241–250

    Article  CAS  Google Scholar 

  3. Iroegbu AO, Sadiku ER, Ray SS, Yskandar H (2020) Sustainable chemicals: a brief survey of the furans. Chem Afr 3:481–496

    Article  Google Scholar 

  4. Xu C, Paone E, Rodríguez-Padron D, Luque R, Mauriello F (2020) Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 49(13):4273–4306

    Article  CAS  PubMed  Google Scholar 

  5. Breeden SW, Clark JH, Farmer TJ, Macquarrie DJ, McElroy CR, Ogunjobi JK, Thornthwaite DW (2021) U.S. Patent Application No. 16/981,964

  6. Ge G, Javier R, Jiang Z, Lu Y, Changwei H (2022) Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Appl Catal B Environ 309:121260

    Article  Google Scholar 

  7. Ji JS, Brett P, Andrii K, Miha G, Blaž L (2022) A review of bio-refining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural M. Chem Eng J 429:132325

    Article  Google Scholar 

  8. Wansi L, Yuan C, Huai L, Junhua Z, Lincai P (2023) Catalytic transfer hydrogenation of biomass-derived furfural into furfuryl alcohol over zirconium doped nanofiber. Fuel 331:125792

    Article  Google Scholar 

  9. Chengjun J, Guogang Y (2022) Reaction kinetics study of catalytical hydrogenation of furfural in liquid phase. Open Access Lib J 9:e8608

    Google Scholar 

  10. Gong W, Chen C, Fan R, Zhang H, Wang G, Zhao H (2018) Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel 231:165–171. https://doi.org/10.1016/j.fuel.2018.05.075

    Article  CAS  Google Scholar 

  11. Taylor MJ, Durndell LJ, Isaacs MA, Parlett CM, Wilson AK, Lee AF, Kyriakou G (2016) Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl Catal B 180:580–585

    Article  CAS  Google Scholar 

  12. Yuan Q, Zhang D, Van-Haandel L, Ye F, Xue T, Hensen EJM, Guan Y (2015) Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. J Mol Catal Chem 406:58–64

    Article  CAS  Google Scholar 

  13. Valekar AH, Lee M, Yoon JW, Kwak J, Hong D-Y, Oh K-R et al (2020) Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr- MOFs: exploring the role of metal node coordination and modification. ACS Catal 10(6):3720–3732

    Article  CAS  Google Scholar 

  14. Li M, Wei J, Yan G, Liu H, Tang X, Sun Y et al (2020) Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts. Renew Energy 147:916–923

    Article  CAS  Google Scholar 

  15. Wang T, Hu A, Xu G, Liu C, Wang H, Xia Y (2019) Porous Zr-thiophenedicarboxylate hybrid for catalytic transfer hydrogenation of bio-based furfural to furfuryl alcohol. Catal Lett 149(7):1845–1855. https://doi.org/10.1007/s10562-019-02748-0

    Article  CAS  Google Scholar 

  16. Liao Y, Koelewijn SF, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T, Navare K, Nicolaï T, Van Aelst K, Maesen M (2020) A sustainable wood biorefinery for low carbon footprint chemicals production. Science 367(6484):1385–1390

    Article  CAS  PubMed  Google Scholar 

  17. Mariscal R, Maireles-Torres P, Ojed M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189. https://doi.org/10.1039/c5ee02666k

    Article  CAS  Google Scholar 

  18. Ogunjobi JK, Farmer TJ, McElroy CR, Breeden SW, Macquarrie DJ, Thornthwaite D, Clark JH (2019) Synthesis of biobased diethyl terephthalate via Diels-Alder addition of ethylene to 2,5-furandicarboxylic acid diethyl ester: an alternative route to 100% biobased poly(ethylene terephthalate). ACS Sustain Chem Eng 7(9):8183–8194. https://doi.org/10.1021/acssuschemeng.8b06196

    Article  CAS  Google Scholar 

  19. Bacovsky D, Dallo M, Wörgetter M (2010) Status of 2nd generation biofuels demonstration facilities. A report to IEA bioenergy task, vol 39, pp 1–126

  20. Report on critical raw materials for the EU (2018) Report of the Ad hoc Working Group on defining critical raw materials; European Commission & DG Enterprise and Industry. http://mima.geus.dk/report-on-critical-raw-materials_en.pdf. Accessed Nov 23

  21. Audemar M, Ciotonea C, Vigier DOK, Royer S, Ungureanu A, Dragoi B, Dumitriu E, Jeróme F (2015) Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable cobalt/SBA-15 catalyst. Chemsuschem 8(11):1885–1891

    Article  CAS  PubMed  Google Scholar 

  22. Yuan Q, Zhang D, Van Haandel L, Ye F, Xue T, Hensen EJM, Guan Y (2015) Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. J Mol Catal Chem 406:58–64

    Article  CAS  Google Scholar 

  23. Wang C, Liu Y, Cui Z, Yu X, Zhang X, Li Y, Zhang Q, Chen L, Ma L (2020) In situ synthesis of Cu nanoparticles on carbon for highly selective hydrogenation of furfural to furfuryl alcohol by using pomelo peel as the carbon source. ACS Sustain Chem Eng 8(34):12944–12955. https://doi.org/10.1021/acssuschemeng.0c03505

    Article  CAS  Google Scholar 

  24. HaliluA ATH, Atta AY, Sudarsanam P, Bhargava SK, Abd Hamid SB (2016) Highly selective hydrogenation of biomass-derived furfural into furfuryl alcohol using a novel magnetic nanoparticles catalyst. Energy Fuels 30:2216–2226

    Article  Google Scholar 

  25. Ramirez-Barria C, Isaacs M, Wilson K, Guerrero-Ruiz A, Rodríguez-Ramos I (2018) Optimization of ruthenium based catalysts for the aqueous phase hydrogenation of furfural to furfuryl alcohol. Appl Catal A 563:177–184

    Article  CAS  Google Scholar 

  26. Li J, Liu JI, Zhou HJ, Fu Y (2016) Catalytic transfer hydrogenation of furfural to furfuryl alcohol over nitrogen-doped carbon-supported iron catalysts. Chemsuschem 9(11):1339–1347

    Article  CAS  PubMed  Google Scholar 

  27. Jirui Y, Haixin G, Feng S (2022) Highly efficient transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over mesoporous Zr-containing hybrids with 5-sulfosalicylic acid as a ligand. Int J Environ Res Public Health 19:9221. https://doi.org/10.3390/ijerph19159221

    Article  CAS  Google Scholar 

  28. Qiu M, Guo T, Xi R, Li D, Qi X (2020) Highly efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol using UiO-66 without metal catalysts. Appl Catal Gen 602:117719

    Article  CAS  Google Scholar 

  29. Valekar AH, Lee M, Yoon JW, Kwak J, Hong DY, Oh KR, Cha GY, Kwon YU, Jung J, Chang JS et al (2020) Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: exploring the role of metal node coordination and modification. ACS Catal 10:3720–3732

    Article  CAS  Google Scholar 

  30. Zhou S, Dai F, Xiang Z, Song T, Liu D, Lu F et al (2019) Zirconium-lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Appl Catal B Environ 248:31–43

    Article  CAS  Google Scholar 

  31. Zhang C, Huo Z, Ren D, Song Z, Liu Y, Jin F et al (2019) Catalytic transfer hydrogenation of levulinate ester into gamma-valerolactone over ternary Cu/ZnO/Al2O3 catalyst. J Energy Chem 32:189–197. https://doi.org/10.1016/j.jechem.2018.08.001

    Article  Google Scholar 

  32. Kumaravel S, Thiripuranthagan S, Durai M, Erusappan E, Vembuli T (2020) Catalytic transfer hydrogenation of biomass-derived levulinic acid to gamma-valerolactone over Sn/Al-SBA-15 catalysts. New J Chem 44(20):8209–8222. https://doi.org/10.1039/d0nj01288b

    Article  CAS  Google Scholar 

  33. Yadvar SP, Ghosh UK, Ray AK (2017) Kinetics studies on pea pod waste hydrolysis to furfural. BioResources 12(2):2326–2338

    Google Scholar 

  34. Wankasi D, Tarawou TJ, Yabefa A (2013) Furfural production from the peels of ripe pawpaw (Carica papaya L.) and pineapple (Ananas comosus) fruits by acid catalyzed hydrolysis. Am J Food Nutr 1(3):136–140

    Article  Google Scholar 

  35. Shafeeq A, Muhammad A, Sarfaraz S, Akram Z, Usman S, Umar F (2015) Effect of acid concentration on the extraction of furfural from corn cobs. Int J Chem Eng Appl 6(5):381–384

    CAS  Google Scholar 

  36. Shaukat A, Fiyyaz AC, Najia I, Kiran A (2002) Effect of chemical treatment on the production of furfural and active carbon from rice husks. Int J Agric Biol 4(1):23–32

    Google Scholar 

  37. Vogel AI (1989) Vogel’s textbook of practical organic chemistry, including qualitative organic analysis. III. Title. QD261.V63. 547-dc19. CIP, London, pp 88–36786

    Google Scholar 

  38. Huang R, Liu Y, Zhang J, Wei J, Peng L, Tang X (2021) (2017), Catalytic transfer hydrogenation of levulinic acid to gamma-valerolactone over an acids-base trifunctional Hf-bagasse coordination complex derived catalyst. Fuel 305:121557. https://doi.org/10.1016/j.fuel.2021.121557

    Article  CAS  Google Scholar 

  39. Gebre H, Fisha K, Kindeya T, Gebremicha T (2015) Synthesis of furfural from Bargasse. Int Lett Chem Phys Astron 57:72–84

    Article  Google Scholar 

  40. Li H, Liu X, Yang T, Zhao W, Saravanamurugan S, Yang S (2017) Porous zirconium-furandicarboxylate microspheres for efficient redox conversion of biofuranics. Chemsuschem 10(8):1761–1770. https://doi.org/10.1002/cssc.201601898

    Article  CAS  PubMed  Google Scholar 

  41. Iroegbu AO, Hlangothi SP (2019) Furfuryl alcohol a versatile, eco-sustainable compound in perspective. Chem Afr 2:223–239. https://doi.org/10.1007/s42250-018-00036-9

    Article  CAS  Google Scholar 

  42. Nanao H, Murakami Y, Sato O, Yamaguchi A, Hiyoshi N, Shirai M (2017) Furfuryl alcohol and furfural hydrogenation over activated carbon-supported palladium catalyst in presence of water and carbon dioxide. ChemSel 2:2471–2475. https://doi.org/10.1002/slct.201700382

    Article  CAS  Google Scholar 

  43. Ronit S, Karishma J, Nicy S, Priyanka G, Shubhangi S, Neeta RS, Joginder S, Ramesh K, Ajay K (2020) A comprehensive review on hydrothermal carbonization of biomass and its applications. Chem Afr 3:1–19

    Article  Google Scholar 

  44. López-Asensioa R, Ceciliaa JA, Jiménez-Gómeza CP, García-Sanchob C, Moreno-Tosta R, Maireles-Torresa P (2018) Appl Catal A Gen 556:1–9

    Article  Google Scholar 

  45. Perez RF, Fraga MA (2014) Green Chem 16:3942–3950

    Article  CAS  Google Scholar 

  46. Anwar Z, Gulfraz M, Irshad M (2014) RAPS 7:2:163–173

    Google Scholar 

  47. Puthiaraj KK, Ahn WS (2019) Catalytic transfer hydrogenation of bio-based furfural by palladium supported on nitrogen-doped porous carbon. Catal Today 324:49–58

    Article  CAS  Google Scholar 

  48. Mendonca JM, Read PL, Wilson CF, Lee C (2014) Planet Space Sci 105:80

    Article  Google Scholar 

  49. Wang B, Wen C, Cui Y, Chen X, Dong Y, Dai WL (2015) RSC Adv 5:29040–29047

    Article  CAS  Google Scholar 

  50. Ayse A, Badal CS, Gregory JK, Michael A (2013) High temperature dilutes phosphoric acid pretreatment of corn Stover for furfural and ethanol production. J Ind Crops Product. www.elsevier.com/locate/indcropttp://www.ijab.org

  51. Oguche JE, Ameh AO, Tanimu IY, Egu SA (2017) FUW Trends Sci Technol J 2(2):782–787

    Google Scholar 

  52. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68

    CAS  Google Scholar 

  53. Dong F, Din G, Zheng H, Xiang X, Chen L, Zhu Y, Li Y (2016) Catal Sci Technol 6:767–779

    Article  CAS  Google Scholar 

  54. Srivastava S, Mohanty P, Parikh JK, Dalai AK, Amritphale SS, Khare AK (2015) Chin Catal J 36:933–942

    Article  CAS  Google Scholar 

  55. Lide DR (2005) Handbook of chemistry and physics, 86th edn. CRC Press, Taylor and Francis, Boca Raton, pp 3–266 (2005–2006)

    Google Scholar 

  56. NIST (2004) Furfural, National Institute of Standards and Technology. http://wwwwebbook.nist.gov/cgi/cbook.cgi?Name=FURFURAL&units=SI&IR=on&cMS=on. Accessed 7 Mar 2004

  57. Mattos BD, Lourençon TV, Serrano L, Labidi J, Gatto DA (2015) Chemical modification of fast-growing eucalyptus wood. Wood Sci Technol 2(49):273–288

    Article  Google Scholar 

  58. Peng W, Wang L, Ohkoshi M, Zhang Z (2015) Separation of hemicelluloses from eucalyptus, thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze–heat treatments. Thermochim Acta 615:15–22

    Article  Google Scholar 

  59. Clement D, HeubleinB FHP, Bohn A (2014) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 44:2–37

    Google Scholar 

  60. Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S (2012) Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv 2:11184–11206

    Article  CAS  Google Scholar 

  61. Hossain KA (2012) Global energy consumption pattern and GDP. Int J Renew Energy Technol Res 1:23–29

    Google Scholar 

  62. Puthiaraj P, Ahn W-SJ (2017) Facile synthesis of microporous carbonaceous materials derived from a covalent triazine polymer for CO2 capture. Energy Chem 26:965–971

    Article  Google Scholar 

  63. Ariadna F-H, Lee R, Béland N, Zambon I, Lavoie JM (2017) Reduction of furfural to furfuryl alcohol in liquid f phase over a biochar-supported platinum catalyst. Energies 10:286

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Department of Chemistry, The Federal University of Technology, Akure, Nigeria, and the Department of the Chemical Sciences Olusegun Agagu University of Technology, Okitipupa, Nigeria for providing infrastructural support to carry out this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Adebayo.

Ethics declarations

Conflict of interest

The authors declare that they do not have any competing interest in preparation and submission of this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

42250_2023_594_MOESM1_ESM.doc

Supplementary file1 GC-MS Spectrum of Furfural from SFS, GC-MS Spectrum of Furfural from CC, GC-MS Spectrum of Furfural from EGS, and GC-MS Spectrum of Furfural from BP (DOC 95 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebayo, A.J., Ogunjobi, J.K., Oluwasina, O.O. et al. Comparative Production and Optimisation of Furfural and Furfuryl Alcohol from Agricultural Wastes. Chemistry Africa 6, 2401–2417 (2023). https://doi.org/10.1007/s42250-023-00594-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00594-7

Keywords

Navigation