Skip to main content

Advertisement

Log in

Distribution, Speciation and Bioavailability of Nutrients in M’Badon Bay of Ebrie Lagoon, West Africa (Côte d’Ivoire)

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Rapid economic development and rampant urbanization are accelerating the eutrophication of coastal environments. This is the case of the bay of M’Badon in Côte d'Ivoire, located in an area not far from an open dump, which is under strong anthropogenic pressure. However, no data is available on nitrogen and phosphorus distribution in the water column and sediments of the M’Badon bay. This study not only targets the distribution of phosphorus and nitrogen, but also the speciation of phosphorus in sediments in order to assess its bioavailability. In order to do this, the waters of the bay of M’Badon were analyzed with a spectrophotometer and the speciation of phosphorus in the sediments was made according to the method of Williams. The results showed that PO43−, TP, NO3, NO2 and TN concentrations in the water column varied significantly among the seasons. While, that of NH4+ did not vary between the seasons. In the water column, inorganic phosphorus (0.94 ± 0.12 mg L−1) is high and represents 65.3% of the TP. In addition, inorganic nitrogen concentration (0.33 ± 0.14 mg L−1) was low and organic nitrogen constituted 85% of TN in the water column. The results also indicated that Fe–P concentration (522.8 ± 233.4 μg g−1) represented the highest fraction of phosphorus in sediments with a percentage of 59.5%. Potential bioavailable P accounted for an average of 95.4% of TP in sediments. So, M’badon bay is an important reservoir of bioavailable phosphorus which might accentuate the eutrophication during several decades in the bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The dataset used during this study is available from the corresponding author on reasonable request.

References

  1. Sujitha SB, Jonathan MP, Escobedo-Urías DC, Aguirre-Bahena F, Villegas LEC, Muñoz-Sevilla NP (2017) Spatial variability of inorganic nutrients and physical parameters in the waters of Bahia Magdalena lagoon, Pacific Coast, Mexico. Acta Ecol Sin 37:187–194

    Article  Google Scholar 

  2. De Andrade-Tubino MF, Azevedo MCC, Franco TP, Araújo FG (2020) How are fish assemblages and feeding guilds organized in different tropical coastal systems? Comparisons among oceanic beaches, bays and coastal lagoons. Hydrobiologia 847:403–419

    Article  Google Scholar 

  3. Garzo PA, Dadon JR, Castro LN (2019) Modelling environmental vulnerability of the Biosphere Reserve Parque Atlántico Mar Chiquito, Argentina, under agricultural and urban impacts. Ocean Coast Manag 170:72–79

    Article  Google Scholar 

  4. Zirino A, Elwany H, Facca C, Neira C, Mendoza G (2016) Nitrogen to phosphorus ratio in the Venice (Italy) lagoon (2001–2010) and its relation to macroalgae. Mar Chem 180:33–41

    Article  CAS  Google Scholar 

  5. Hall LM, Morris LJ, Chamberlain RH, Hanisak MD, Virnstein RW, Paperno R, Jacoby CA (2022) Spatiotemporal patterns in the biomass of drift macroalgae in the Indian River Lagoon, Florida, United States. Front Mar Sci. https://doi.org/10.3389/fmars.2022.767440

    Article  Google Scholar 

  6. Boadella J, Butturini A, Compte J, Gionchetta G, Perujo N, Quintana XD, Romaní AM (2021) Different microbial functioning in natural versus man-made Mediterranean coastal lagoons in relation to season. Estuar Coast Shelf Sci 259:107434

    Article  CAS  Google Scholar 

  7. De Vittor C, Faganeli J, Emili A, Covelli S, Predonzani S, Acquavita A (2012) Benthic fluxes of oxygen, carbon and nutrients in the Marano and Grado Lagoon (northern Adriatic Sea, Italy). Estuar Coast Shelf Sci 113:57–70

    Article  Google Scholar 

  8. Almeida LR, Costa IS, Eskinazi-Sant’Anna EM (2012) Composition and abundance of zooplankton community of an impacted estuarine lagoon in Northeast Brazil. Braz J Biol 72:13–24

    Article  Google Scholar 

  9. N’Goran KM, Yao KM, Trokourey A (2019) Phosphorus and nitrogen speciation in waters and sediments highly contaminated by an illicit urban landfill: the Akouedo landfill, Côte d’Ivoire. Reg Stud Mar Sci 31:100805

    Google Scholar 

  10. Ogidi OI, Akpan UM (2022) Aquatic biodiversity loss: impacts of pollution and anthropogenic activities and strategies for conservation. Biodiversity in Africa: potentials, threats and conservation. Springer, Singapore, pp 421–448

    Chapter  Google Scholar 

  11. Yao KS, Li D, Lei HJ, Van den Brink PJ, Ying GG (2021) Imidacloprid treatments induces cyanobacteria blooms in freshwater communities under sub-tropical conditions. Aquat Toxicol 240:105992

    Article  PubMed  Google Scholar 

  12. dos Santos CR, Quadra GR, do Oliveira-Souza H, de Amaral VS, Navoni JA (2021) The link between pharmaceuticals and cyanobacteria: a review regarding ecotoxicological, ecological, and sanitary aspects. Environ Sci Pollut Res 28:41638–41650

    Article  Google Scholar 

  13. Chatziefthimiou AD, Banack SA, Metcalf JS (2021) Harmful algal and cyanobacterial harmful algal blooms in the arabian seas: current status, implications, and future directions. The Arabian seas: biodiversity environmental challenges and conservation measures. Springer, Cham, pp 1083–1101

    Chapter  Google Scholar 

  14. Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, andcontrols. Microb Ecol 65:995–1010

    Article  CAS  PubMed  Google Scholar 

  15. Berbel GBB, Braga ES (2014) Phosphorus in Antarctic surface marine sedimentschemical speciation in Admiralty Bay. Antarct Sci 26:281–289

    Article  Google Scholar 

  16. Ni JY, Lin P, Zhen Y, Yao XY, Guo LD (2015) Distribution, source and chemical speciation of phosphorus in surface sediments of the central Pacific Ocean. Deep-Sea Res I 105:74–82

    Article  CAS  Google Scholar 

  17. Berbel GBB, Favaro DIT, Braga ES (2015) Impact of harbour, industry and sewage on the phosphorus geochemistry of a subtropical estuary in Brazil. Mar Pollut Bull 93:44–52

    Article  CAS  PubMed  Google Scholar 

  18. Zhou FX, Gao XL, Yuan HM, Song JM, Chen CTA, Lui HK, Zhang Y (2016) Geochemical forms and seasonal variations of phosphorus in surface sediments of the East China Sea shelf. J Mar Syst 159:41–54

    Article  Google Scholar 

  19. Meng J, Yao P, Yu ZG, Bianchi TS, Zhao B (2014) Speciation, bioavilability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf. Estuar Coast Shelf Sci 144:27–38

    Article  CAS  Google Scholar 

  20. Linsy P, Nagender Nath B, Mascarenhas-Pereira MBL, Chauhan T, Sebastian T, Babu CP, Khadge NH (2018) Distribution and diagenesis of phosphorus in the deep-sea sediments of the Central Indian Basin. J Geophys Res Oceans 123:7963–7982

    Article  CAS  Google Scholar 

  21. Soro M-P, N’goran KM, Ouattara AA, Yao KM, Diaco T (2023) Nitrogen and phosphorus spatio-temporal distribution and fluxes intensifying eutrophication in three tropical rivers of Côte d’Ivoire (West Africa). Mar Pollut Bull 186:114391

    Article  CAS  PubMed  Google Scholar 

  22. Choushary AK, Sagar AMK, Kumar AK (2020) Sustainable Management of water demand in the face of rapid urbanization and depletion of groundwater. Stud Indian Place Names 40:146–160

    Google Scholar 

  23. Nguyen TT, Nemery J, Gratiot N, Garnier J, Strady E, Tran VQ, Aimé J (2019) Phosphorus adsorption/desorption processes in the tropical Saigon River estuary (Southern Vietnam) impacted by a megacity. Estuar Coast Shelf Sci 227:106321

    Article  CAS  Google Scholar 

  24. Svirčev Z, Krstič S, Miladinov-mikov M, Baltič V, Vidovič M (2009) Freshwater Cyanobacterial blooms and primary liver Cancer epidemiological studies in Serbia. J Environ Sci Health Part C: Environ Arcinogenes Ecotoxicol Rev 27:36–55

    Article  Google Scholar 

  25. Smith DR, King KW, Williams MR (2015) What is causing the harmful algal blooms in Lake Erie? J Soil Water Conserv 70:27A-29A

    Article  Google Scholar 

  26. Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchond Y, Étrillard C, Levain A, Moatar F, Pannard A, Souchu P, Lefebvre A, Pinay G (2019) Eutrophication: a new wine in an old bottle? Sci Total Environ 651:1–11

    Article  PubMed  Google Scholar 

  27. McCarthy MJ, Lavrentyev PJ, Yang L, Zhang L, Chen Y, Qin B, Gardner WS (2007) Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia 581:195–207

    Article  CAS  Google Scholar 

  28. Asare EA, Assim ZB, Wahi RB, Tahir RB, Droepenu EK (2021) Application of fuzzy evaluation technique and grey clustering method for water quality assessment of the coastal and estuaries of selected rivers in Sarawak. Bull Natl Res Centre 45:1–11

    Article  Google Scholar 

  29. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  30. Aminot A, Chaussepied M (1983) Manuel des analyses chimiques en milieu marin. Editions Jouve, CNEXO, Editions Jouve Paris, p 395

  31. Rodier J, Legube B, Merlet N, Brunet R (1996) L’analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer. 8è édition Dunod. Paris, France, pp 564–571

  32. APHA (1999) Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, 20th edn, Washington DC, USA

  33. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, 21th ed. American Water Works Association and Water Environment Federation, Washington DC, USA

  34. Kouassi NLB, Yao KM, Trokourey A, Soro MB (2014) Preliminary assessment of cadmium mobility in surface sediments of a tropical estuary. Bull Chem Soc Ethiop 28:245–254

    Article  Google Scholar 

  35. Carbonell-Barrachina AA, Jugsujinda A, Burlo F, Delaune RD, Patrick WH (2000) Arsenic chemistry in municipal sewage sludge as affected by redox potential and pH. Water Res 34:216–224

    Article  CAS  Google Scholar 

  36. Kuwano BH, Nogueira MA, Santos CA, Fagotti DS, Santos MB, Lescano LEAM, Andrade DS, Barbosa GMC, Tavares-Filho J (2017) Application of landfill leachate improves wheat nutrition and yield but has minor effects on soil properties. J Environ Qual 46:153–159

    Article  CAS  PubMed  Google Scholar 

  37. Williams JDH, Jaquet JM, Thomas RL (1976) Forms of phosphorus in the surficial sediments of Lake Erie. J Fish Res Board Can 33:413–429

    Article  CAS  Google Scholar 

  38. Ruban V, Lopez-Sanchez JF, Pardo P, Rauret G, Muntau H, Quevauviller P (2002) Sequential extraction procedures for phosphorus forms in lake sediment. Methodologies in soil and sediment fractionation studies: single and sequential extraction procedures. The Royal Society of Chemistry, Cambridge, pp 105–122

    Google Scholar 

  39. Kouassi NLB, Yao KM, Sangare N, Albert Trokourey A, Soro MB (2019) The mobility of the trace metals copper, zinc, lead, cobalt, and nickel in tropical estuarine sediments, Ebrie Lagoon, Côte d’Ivoire. J Soils Sediments 19:929–944

    Article  CAS  Google Scholar 

  40. Naminata S, Kwa-Koffi KE, Marcel KA, Marcellin YK (2018) Assessment and impact of leachate generated by the Landfill City in Abidjan on the quality of ground water and surface water (M’Badon Bay, Côte d’Ivoire). J Water Resour Prot 10:145

    Article  CAS  Google Scholar 

  41. Jarvie HP, Sharpley AN, Withers PJ, Scott JT, Haggard BE, Neal C (2013) Phosphorus mitigation to control river eutrophication: murky waters, inconvenient truths, and “post normal” science. J Environ Qual 42:295–304

    Article  CAS  PubMed  Google Scholar 

  42. Yao KM, Metongo BS, Trokourey A, Bokra Y (2009) La pollution des eaux de la zone urbaine d’une lagune tropicale par les matières oxydables (lagune Ebrié, Côte d’Ivoire). Int J Biol Chem Sci. https://doi.org/10.4314/ijbcs.v3i4.47168

    Article  Google Scholar 

  43. Hunter HM, Walton RS (2008) Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia. J Hydrol 356:131–146

    Article  CAS  Google Scholar 

  44. Acquavita A, Aleffi IF, Benci C, Bettoso N, Crevatin E, Milani L, Mattassi G (2015) Annual characterization of the nutrients and trophic state in a Mediterranean coastal lagoon: the Marano and Grado Lagoon (northern Adriatic Sea). Reg Stud Mar Sci 2:132–144

    Google Scholar 

  45. Silva DML, Souza MFL, Moraes MEB, Silva FS, Strenzel GM (2015) Land use effects on nutrient concentration in a small watershed in northeast Brazil. Braz J Aquat Sci Technol 19:102–111

    Article  CAS  Google Scholar 

  46. Mama D, Chouti W, Alassane A, Changotade O, Alapini F, Boukari M (2011) Etude dynamique des apports en éléments majeurs et nutritifs des eaux de la lagune de Porto-Novo (Sud Bénin). Int J Biol Chem Sci 5:1278–1293

    Google Scholar 

  47. Pereira-Filho J, Rörig LR, Schettini CAF, Soppa MA, Santana BL, Santos JE (2010) Spatial changes in the water quality of Itajaí-Açú Fluvial-Estuarine System, Santa Catarina, Brazil. An Acad Bras Ciênc 84:963–982

    Article  Google Scholar 

  48. SEQ-EAU (2003) Système d'évaluation de la qualité de l'eau des cours d'eau. Grilles d'évaluation Seq-eau (Version 2). MEDD, Agences de l'eau, p 12

  49. RCQE (2012) Recommandations canadiennes pour la qualité de l’environnement Conseil canadien des ministres de l’environnement

  50. NRC (National Research Council) (1972) Accumulation of Nitrate. Committee on Nitrate Accumulation, Agriculture Board, National Academy of Sciences. Washington DC

  51. USGS (US Geological Survey) (1999) The quality of our nation’s waters: nutrients and pesticides. Rapport no. 1225. US Geological Survey. Reston (Virginie), pp 1–82

  52. Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangroves. Tree Physiol 30:1148–1160

    Article  CAS  PubMed  Google Scholar 

  53. Hung J-J, Hung P-Y (2003) Carbon and nutrient dynamics in a hypertrophic lagoon in Southwestern Taiwan. J Mar Syst 42:97–114

    Article  Google Scholar 

  54. Callender E (2003) Heavy metals in the environment—historical trends. Environ Geochem 9:67–106

    Google Scholar 

  55. Sutula M, Bianchi TS, McKee BA (2004) Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico. Limnol Oceanogr 49:2223–2235

    Article  Google Scholar 

  56. Adhikari PL, White JR, Maiti K, Nguyen N (2015) Phosphorus speciation and sedimentary phosphorus release from the Gulf of Mexico sediments: implication for hypoxia. Estuar Coast Shelf Sci 164:77–85

    Article  CAS  Google Scholar 

  57. Zhang JZ, Fischer CJ, Ortner PB (2004) Potential availability of sedimentary phosphorus to sediment resuspension in Florida Bay. Glob Biogeochem Cycles. https://doi.org/10.1029/2004GB002255

    Article  Google Scholar 

  58. Kristensen E, Ahmed SI, Devol AH (1995) Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnol Oceanogr 40:1430–1437

    Article  CAS  Google Scholar 

  59. Zhang W, White JR, DeLaune RD (2012) Diverted Mississippi River sediment as a potential phosphorus source affecting coastal Louisiana water quality. J Freshw Ecol 27:575–586

    Article  CAS  Google Scholar 

  60. Malecki LM, White JR, Reddy R (2004) Nitrogen and phosphorus flux rates from sediment in the lower St. Johns River estuary. J Environ Qual 3:1545–1555

    Article  Google Scholar 

  61. Berner RA (1973) Phosphate removal from sea water by adsorption on volcanogenic ferric oxides. Earth Plant Sci Lett 18:77–86

    Article  CAS  Google Scholar 

  62. Hingston FJ, Posner AM, Quirk JP (1974) Anion adsorption by goethite and gibbsite: 2. Desorption of anions from hydrous oxide surfaces. J Soil Sci 25:16–26

    Article  CAS  Google Scholar 

  63. Khalid RA, Patrick WH, Delaune RD (1977) Phosphorus sorption characteristics of flooded soils. Soil Sci Soc Am J 41:305–310

    Article  CAS  Google Scholar 

  64. Lindstrom SM, White JR (2011) Reducing phosphorus flux from organic soils in surface flow treatment wetlands. Chemosphere 85:625–629

    Article  CAS  PubMed  Google Scholar 

  65. Christophoridis C, Fytianos K (2006) Conditions affecting the release of phosphorus from surface lake sediments. J Environ Qual 35:1181–1192

    Article  CAS  PubMed  Google Scholar 

  66. Andrieux F, Aminot A (1997) A two year survey of phosphorus speciation in the sediments of the Bay of Seine (France). Cont Shelf Res 17:1229–1245

    Article  Google Scholar 

  67. Kang X, Song J, Yuan H, Shi X, Yang W, Li X, Li N, Duan L (2017) Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay. Estuar Coast Shelf Sci 188:127–136

    Article  CAS  Google Scholar 

  68. Søndergaard M, Windolf J, Jeppesen E (1996) Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Water Res 30:992–1002

    Article  Google Scholar 

  69. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. Sea N Y 2:26–77

    Google Scholar 

  70. Ingall ED, Van Cappellen P (1990) Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim Cosmochim Acta 54:373–386

    Article  CAS  Google Scholar 

  71. Ruttenberg KC, Goñi MA (1997) Phosphorus distribution, C:N: P ratios, and δ13 Coc in arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Mar Geol 139:123–145

    Article  CAS  Google Scholar 

  72. Kraal P, Slomp CP, de Lange GJ (2010) Sedimentary organic carbon to phosphorus ratios as a redox proxy in Quaternary records from the Mediterranean. Chem Geol 277:167–177

    Article  CAS  Google Scholar 

  73. Kraal P, Slomp CP, Reed DC, Reichart G-J, Poulton SW (2012) Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea. Biogeosciences 9:2603–2624

    Article  CAS  Google Scholar 

  74. Yang B, Liu SM, Wu Y, Zhang J (2016) Phosphorus speciation and availability in sediments off the eastern coast of Hainan Island South China. Sea Cont Shelf Res 118:111–127

    Article  Google Scholar 

  75. Van der Zee C, Slomp CP, Van Raaphorst W (2002) Authigenic P formation and reactive P burial in sediments of the Nazaré canyon on the Iberian margin (NE Atlantic). Mar Geol 185:379–392

    Article  Google Scholar 

  76. Sekula-Wood E, Benitez-Nelson CR, Bennett MA, Thunell R (2012) Magnitude and composition of sinking particulate phosphorus fluxes in Santa Barbara Basin California. Glob Biogeochem Cycles 26:1–15

    Article  Google Scholar 

  77. Schenau SJ, Lange GJD (2001) Phosphorus regeneration vs burial in sediments of the Arabian Sea. Mar Chem 75:201–217

    Article  CAS  Google Scholar 

  78. Xu D (2007) The research of sedimentary geochemistry of the Hainan Island nearshore sea area, Master’s thesis, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China (in Chinese)

  79. Kouassi NLB, Yao KM, Trokourey A, Soro MB (2015) Distribution, sources, and possible adverse biological effects of trace metals in surface sediments of a tropical estuary. Environ Forensics 16:96–108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Director of Centre de Recherches Océanologiques for facilitating the field and laboratory work. Thanks to the reviewers whose criticism and contribution improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N’guessan Louis Berenger Kouassi.

Ethics declarations

Conflict to Interest

No conflict of interest exists between the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N’Goran, K.M., Soro, MP., Kouassi, N.L.B. et al. Distribution, Speciation and Bioavailability of Nutrients in M’Badon Bay of Ebrie Lagoon, West Africa (Côte d’Ivoire). Chemistry Africa 6, 1619–1632 (2023). https://doi.org/10.1007/s42250-023-00590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00590-x

Keywords

Navigation