Skip to main content
Log in

A Review on Chemoselective Reduction of Nitroarenes for Wastewater Remediation Using Biochar Supported Metal Catalysts: Kinetic and Mechanistic Studies

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Nitroarenes are applied for several industrial purposes e.g., nitrobenzene manufacturing, textile, pharmaceuticals, etc. Large-scale production and discharge of nitroarenes containing wastewater into the waterbodies have become a threat to the environment. Around 4–5 million tons of nitrobenzene, nitrotoluene, and 2,4-dinitrotoluene are produced commercially per year around the globe. Due to the hazardous effects, nitroaromatic compounds are listed in the 130 priority pollutants by the US Environmental Protection Agency. Nitroarenes are chemically stable, persistent, toxic, and carcinogenic even if found at low concentrations in drinking water. Due to being electron-deficient, nitroarenes do not mineralize naturally by microbes or other biological treatments. Nitrobenzene, 2,4-dinitrophenol, 2,4,6-trinitrophenol, etc. are mainly present in the effluents of the nitrobenzene production plants. The nitroarenes reduction in an aqueous medium using heterogeneous catalysts is a greener approach. A carbonaceous materials biochar (BC), when combined with metal nanoparticles, forms new hybridized material i.e., metal-BC hybrid (MBC) which shows good catalytic activities in the reduction of nitroarenes selectively. These materials with higher surface area and porosity are promising materials for this purpose. This review focuses mainly on the various contamination sources and the catalytic efficiency of various BCs/MBCs regarding the selective reduction of various nitroarenes. The kinetics and mechanistic behavior of the nitroarene reduction using MBCs have also been discussed with a proper mathematical approach. This review also opens a new dimension to designing efficient BC-based catalytic materials for the selective reduction of various nitroarenes along with suitable characterization techniques which could be adopted for the detailed mechanistic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao SRA, Niu G-L, Liu H, Zhou N-Y (2009) Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil. FEMS Microbiol Ecol 70:315–323

    Article  CAS  Google Scholar 

  2. Fountoulaki S, Daikopoulou V, Gkizis PL, Tamiolakis I, Armatas GS, Lykakis IN (2014) Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles. ACS Catal 4:3504–3511

    Article  CAS  Google Scholar 

  3. Mu Y, Yu H, Zheng JC, Zhang SJ, Sheng GP (2004) Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere 54:789–794

    Article  CAS  PubMed  Google Scholar 

  4. Mukherjee A, Adak M, Chowdhury A, Dhak D (2019) Synthesis of cost-effective trimetallic oxide nanocatalysts for the reduction of nitroarenes in presence of NaBH4 in an aqueous medium. Curr Catal 8(1):41–55

    Article  CAS  Google Scholar 

  5. van der Zee FP, Lettinga G, Field JA (2001) Azo dye decolourisation by anaerobic granular sludge. Chemosphere 44:1169–1176

    Article  PubMed  Google Scholar 

  6. Apolinário C, Silva A, Machado BF, Gomes HT, Paulo P, Araújo PP, Figueiredo JL, Faria JL (2008) Wet air oxidation of nitro-aromatic compounds: reactivity on single- and multi-component systems and surface chemistry studies with a carbon xerogel. Appl Catal B Environ 84:75–86

    Article  Google Scholar 

  7. Fantoni D, Brozzo G, Canepa M, Cipolli F, Marini L, Ottonello G, Zuccolini M (2002) Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ Geol 42(8):871–882

    Article  CAS  Google Scholar 

  8. Kavitha V, Palanivelu K (2005) Degradation of nitrophenols by Fenton and photo-Fenton processes. J Photochem Photobiol A Chem 170:83–95

    Article  CAS  Google Scholar 

  9. Rosenstock L (1997) Work organization research at the National Institute for Occupational Safety and Health. J Occup Health Psychol 2(1):7

    Article  CAS  PubMed  Google Scholar 

  10. Zhang D et al (2019) Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron: comparison of surface modification methods. Sci Total Environ 694:133701

    Article  CAS  PubMed  Google Scholar 

  11. Wutich A, Rosinger A, Stoler J, Jepson W, Brewis A (2019) Measuring human water needs. Am J Hum Biol 2:e23350

    Google Scholar 

  12. Fu F, Cheng Z, Lu J (2015) Synthesis and use of bimetals and bimetal oxides in contaminants removal from water: a review. RSC Adv 5(104):85395–85409

    Article  CAS  Google Scholar 

  13. Goyal V, Sarki N, Singh B, Ray A, Poddar M, Bordoloi A, Narani A, Natte K (2020) Carbon-supported cobalt nanoparticles as catalysts for the selective hydrogenation of nitroarenes to arylamines and pharmaceuticals. ACS Appl Nano Mater 3(11):11070–11079

    Article  CAS  Google Scholar 

  14. Formenti D, Ferretti F, Scharnagl FK, Beller M (2019) Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem Rev 119:2611–2680

    Article  CAS  PubMed  Google Scholar 

  15. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rai R, Chand D (2021) Copper nanoparticles (CuNPs) catalyzed chemoselective reduction of nitroarenes in aqueous medium. J Chem Sci 133:87

    Article  CAS  Google Scholar 

  17. Panja S, Kundu D, Ahammed S, Ranu BC (2017) Highly chemoselective reduction of azides to amines by Fe(0) nanoparticles in water at room temperature. Tetrahedron Lett 58:3457

    Article  CAS  Google Scholar 

  18. Wang JW, Liu J, Yang NT, Huang SS, Sun YH, Zhu Y (2016) Designing axial growth of Co–Ni bimetallic nanowires with hexagon-like caps and their catalytic hydrogenation for nitrobenzene. Nanoscale 8:3949–3953

    Article  CAS  PubMed  Google Scholar 

  19. Jagadeesh RV, Natte K, Junge H, Beller M (2015) Nitrogen-doped graphene-activated iron-oxide-based nanocatalysts for selective transfer hydrogenation of nitroarenes. ACS Catal 5:1526–1529

    Article  CAS  Google Scholar 

  20. Perret N, Wang X, Delannoy L, Potvin C, Louis C, Keane MA (2012) Enhanced selective nitroarene hydrogenation over Au supported on β-Mo2C and β-Mo2C/Al2O3. J Catal 286:172–183

    Article  CAS  Google Scholar 

  21. Zhang CF, Zhang Z, Wang X, Li MR, Lu JM, Si R, Wang F (2016) Transfer hydrogenation of nitroarenes to arylamines catalysed by an oxygen-implanted MoS2 catalyst. Appl Catal A 525:85–93

    Article  CAS  Google Scholar 

  22. Wang CL, Ciganda R, Salmon L, Gregurec D, Irigoyen J, Moya S, Ruiz J, Astruc D (2016) Highly efficient transition metal nanoparticle catalysts in aqueous solutions. Angew Chem Int Ed 55:3091–3095

    Article  CAS  Google Scholar 

  23. Jiang CJ, Shang Z, Liang XH (2015) Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed supported nickel nanoparticles. ACS Catal 5:4814–4818

    Article  CAS  Google Scholar 

  24. Datta KJ, Rathi A, Gawande MB, Ranc V, Zoppellaro G, Varma RS, Zboril R (2016) Base-free transfer hydrogenation of nitroarenes catalyzed by micro-mesoporous iron oxide. ChemCatChem 8:2351–2355

    Article  CAS  Google Scholar 

  25. Huang HG, Wang X, Tan MW, Chen CJ, Zou XJ, Ding WZ, Lu XG (2016) Solvent-free selective hydrogenation of nitroarenes using nanoclusters of palladium supported on nitrogen-doped ordered mesoporous carbon. ChemCatChem 8:1485–1489

    Article  CAS  Google Scholar 

  26. Liu X, Ye S, Li H-Q, Liu Y-M, Cao Y, Fan K-N (2013) Mild, selective and switchable transfer reduction of nitroarenes catalyzed by supported gold nanoparticles. Catal Sci Technol 3:3200–3206

    Article  CAS  Google Scholar 

  27. Shimizu K, Miyamoto Y, Satsuma A (2010) Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. J Catal 270:86–94

    Article  CAS  Google Scholar 

  28. Dey R, Mukerjee N, Ahammed S, Ranu BC (2012) Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chem Commun 48:7982–7984

    Article  CAS  Google Scholar 

  29. Petkar DR, Kadu B, Chikate RC (2014) Highly efficient and chemoselective transfer hydrogenation of nitroarenes at room temperature over magnetically separable Fe–Ni bimetallic nanoparticles. RSC Adv 4:8004–8010

    Article  CAS  Google Scholar 

  30. Wen H, Yao K, Zhang Y, Zhou Z, Kirschning A (2009) Catalytic transfer hydrogenation of aromatic nitro compounds in presence of polymer-supported nano-amorphous Ni–B catalyst. Catal Commun 10:1207–1211

    Article  CAS  Google Scholar 

  31. Antonetti C, Oubenali M, RaspolliGalletti AM, Serp P, Vannucci G (2012) Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline. Appl Catal A 421–422:99–107

    Article  Google Scholar 

  32. Lu Y-M, Zhu H-Z, Li W-G, Hu B, Yu S-H (2013) Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation. J Mater Chem A 1:3783–3788

    Article  CAS  Google Scholar 

  33. Shukla A, Singha R, Sasaki T, Bal R (2015) Nanocrystalline Pt-CeO2 as an efficient catalyst for a room temperature selective reduction of nitroarenes. Green Chem 17:785–790

    Article  CAS  Google Scholar 

  34. Huang H, Wang X, Li X, Chen C, Zou X, Ding W, Lu X (2017) Highly chemoselective reduction of nitroarenes over non-noble metal nickel-molybdenum oxide catalysts. Green Chem 19:809–815

    Article  CAS  Google Scholar 

  35. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    Article  CAS  PubMed  Google Scholar 

  36. Gawande MB, Branco P, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393

    Article  CAS  PubMed  Google Scholar 

  37. Li X et al (2016) Removal of nitrobenzene by immobilized nanoscale zero-valent iron: effect of clay support and efficiency optimization. Appl Surf Sci 370:260–269

    Article  CAS  Google Scholar 

  38. Feng X-P et al (2021) Immobilized β-cyclodextrin and palladium-pyridylaldehyde complex on silica nanoparticles as a highly active catalyst for Suzuki, reduction of nitroarenes and oxidative amination of aldehydes reactions in water. Mater Today Commun 26:101909

    Article  CAS  Google Scholar 

  39. Yuan M et al (2019) Co-MOF-derived hierarchical mesoporous yolk-shell-structured nanoreactor for the catalytic reduction of nitroarenes with hydrazine hydrate. ChemCatChem 11(14):3327–3338

    Article  CAS  Google Scholar 

  40. Pan H et al (2020) Well-constructed Ni@ CN material derived from di-ligands Ni-MOF to catalyze mild hydrogenation of nitroarenes. Mol Catal 485:110838

    Article  Google Scholar 

  41. Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113:5782–5816

    Article  CAS  PubMed  Google Scholar 

  42. Cao Y, Yu H, Tan J, Peng F, Wang H, Li J, Zheng W, Wong NB (2013) Nitrogen-phosphorous-and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon 57:433–442

    Article  CAS  Google Scholar 

  43. Fakhri P, Jaleh B, Nasrollahzadeh M (2014) Synthesis and characterization of copper nanoparticles supported on reduced graphene oxide as a highly active and recyclable catalyst for the synthesis of formamides and primary amines. J Mol Catal A Chem 383–384:17–22

    Article  Google Scholar 

  44. Atarod M, Nasrollahzadeh M, Sajadi SM (2015) Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B. RSC Adv 5:91532–91543

    Article  CAS  Google Scholar 

  45. Nasrollahzadeh M, Sajadi S, Rostami-Vartooni A, Alizadeh M, Bagherzadeh M (2016) Green synthesis of Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. J Colloid Interface Sci 466:360–368

    Article  CAS  PubMed  Google Scholar 

  46. Feng Y-S, Ma J-J, Kang Y-M, Xu H-J (2014) PdCu nanoparticles supported on graphene: an efficient and recyclable catalyst for reduction of nitroarenes. Tetrahedron 70(36):6100–6105

    Article  CAS  Google Scholar 

  47. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim H-Y, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolos V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  CAS  PubMed  Google Scholar 

  48. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  PubMed  Google Scholar 

  49. Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9:3460–3462

    Article  CAS  PubMed  Google Scholar 

  50. Peng L, Xu Z, Liu Z, Wei Y, Sun H, Li Z, Zhao X, Gao C (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 6:5716

    Article  CAS  PubMed  Google Scholar 

  51. He W et al (2014) Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 136(2):750–757

    Article  CAS  PubMed  Google Scholar 

  52. Mukherjee A, Dhak P, Dhak D (2022) The solvothermal synthesis of a 3D rod-like Fe–Al bimetallic metal–organic-framework for efficient fluoride adsorption and photodegradation of water-soluble carcinogenic dyes. Environ Sci Adv 1(2):121–137

    Article  Google Scholar 

  53. Su H et al (2016) Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environ Pollut 214:94–100

    Article  CAS  PubMed  Google Scholar 

  54. Mukherjee A, Goswami N, Dhak D (2022) Photocatalytic remediation of industrial dye waste streams using biochar and metal-biochar hybrids: a critical review. Chem Afr. https://doi.org/10.1007/s42250-022-00467-5

    Article  Google Scholar 

  55. Cha JS et al (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15

    Article  CAS  Google Scholar 

  56. Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routledge, London

    Book  Google Scholar 

  57. Ahmaruzzaman M (2021) Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater. Mater Res Bull 140:111262

    Article  CAS  Google Scholar 

  58. Singh BP, Cowie AL, Smernik RJ (2012) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46(21):11770–11778

    Article  CAS  PubMed  Google Scholar 

  59. Qhubu MC, Methula B, Xaba T, Moyo M, Pakade VE (2021) Iron–zinc impregnated biochar composite as a promising adsorbent for toxic hexavalent chromium remediation: kinetics, isotherms and thermodynamics. Chem Afr 30:1–11

    Google Scholar 

  60. Aoulad El Hadj Ali Y, Ahrouch M, Ait Lahcen A, Abdellaoui Y, Stitou M (2022) Recent advances and prospects of biochar-based adsorbents for malachite green removal: a comprehensive review. Chem Afr 18:1–30

    Google Scholar 

  61. Sharma R et al (2020) A comprehensive review on hydrothermal carbonization of biomass and its applications. Chem Afr 3(1):1–19

    Article  CAS  Google Scholar 

  62. Saad A, Jlassi K, Abderrabba M, Chehimi MM (2022) Dimethoxytriazine-triazole linked mesoporous silica hybrid sorbent for cationic dyes adsorption. Chem Afr 18:1–3

    Google Scholar 

  63. Van der Zee FR, Cervantes F (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27:256–277

    Article  PubMed  Google Scholar 

  64. Kappler A, Wuestner M, Ruecker A, Harter J, Halama M, Behrens S (2014) Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ Sci Technol Lett 1:339–344

    Article  CAS  Google Scholar 

  65. Lu Y, Xie Q, Tang L, Yu J, Wang J, Yang Z, Fan C, Zhang S (2021) The reduction of nitrobenzene by extracellular electron transfer facilitated by Fe-bearing biochar derived from sewage sludge. J Hazard Mater 403:123682

    Article  CAS  PubMed  Google Scholar 

  66. Zhang D, Li Y, Tong S, Jiang X, Wang L, Sun X, Li J, Liu X, Shen J (2018) Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene. RSC Adv 8:22161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Islam MS, Ahmed M, Raknuzzaman M, Islam MK (2015) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Ind 48:282–291

    Article  CAS  Google Scholar 

  68. Bender J, Lee R, Phillips P (1995) Uptake and transformation ofmetals and metalloids by microbial mats and their use in bioremediation. J Ind Microbiol Biotechnol 14:113–118

    CAS  Google Scholar 

  69. Mukherjee A, Adak MK, Upadhyay S, Khatun J, Dhak P, Khawas S, Ghorai UK, Dhak D (2019) Efficient fluoride removal and dye degradation of contaminated water using Fe–Al–Ti oxide nanocomposite. ACS Omega 4:9686–9696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hao MJ, Qiu M, Yang H, Hu BW, Wang XX (2021) Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci Total Environ 760:143333

    Article  CAS  PubMed  Google Scholar 

  71. Yao L, Yang H, Chen ZS, Qiu MQ, Hu BW, Wang X (2021) Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 273:128576

    Article  CAS  Google Scholar 

  72. Houde M, Muir D, Kidd KA, Guildford S, Drouillard K, Evans MS, Wang XW, Whittle DM, Haffner D, Kling D (2008) Influence of lake characteristics on the biomagnification of persistentorganic pollutants in lake trout food webs. Environ Toxicol Chem 27(10):2169–2178

    Article  CAS  PubMed  Google Scholar 

  73. Liu XL, Pang H, Liu XW, Li Q, Zhang N, Mao L, Qiu MQ, Hu BW, Yang H, Wang XK (2021) Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation 2:100076

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu XL, Ma R, Zhuang L, Hu BW, Chen JR, Liu XY, Wang XK (2021) Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit Rev Environ Sci Technol 51:751–790

    Article  CAS  Google Scholar 

  75. Ghaly AE, Ananthasankar R, Alhattab M, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. Chem Eng Process Technol 5:1000182

    Google Scholar 

  76. Luan FB, Burgos W, Xie L, Zhou Q (2010) Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanellaputrefaciens CN32. Environ Sci Technol 44:184–190

    Article  CAS  PubMed  Google Scholar 

  77. Kielhorn J, Wahnschaffe U, Mangelsdorf I (2003) Environmental Health Criteria 229: selected nitro-and nitro-oxy-polycyclic aromatic hydrocarbons. World Health Organization, Geneva

    Google Scholar 

  78. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2014) Diesel and gasoline engine exhausts and some nitroarenes. IARC monographs on the evaluation of carcinogenic risks to humans. IARC Monogr Eval Carcinog Risks Hum 105:9

    PubMed Central  Google Scholar 

  79. Yamazaki H, Hatanaka N, Kizu R, Hayakawa K, Shimada N, Guengerich FP, Nakajima M, Yokoi T (2000) Bioactivation of diesel exhaust particle extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochromes P450 1A1, 1A2, and 1B1. Mutat Res 472(1–2):129–138

    Article  CAS  PubMed  Google Scholar 

  80. Taga R, Tang N, Hattori T, Tamura K, Sakai S, Toriba A, Kizu R, Hayakawa K (2005) Direct-acting mutagenicity of extracts of coal burning-derived particulates and contribution of nitropolycyclic aromatic hydrocarbons. Mutat Res 581(1–2):91–95

    Article  CAS  PubMed  Google Scholar 

  81. Harkov R et al (1983) Measurement of selected volatile organic compounds at three locations in New Jersey during the summer season. J Air Pollut Control Assoc 33(12):1177–1183

    Article  CAS  Google Scholar 

  82. Howard PH, Michalenko EM, Jarvis WF, Basu DK, Sage GW, Meylan WM, Beauman JA, Gray DA (2017) Handbook of environmental fate and exposure data for organic chemicals, Routledge

  83. Harkov R et al (1985) Monitoring volatile organic compounds at hazardous and sanitary landfills in New Jersey. J Environ Sci Health A 20(5):491–501

    Google Scholar 

  84. Brodzinsky R, Singh HB (1983) Volatile organic chemicals in the atmosphere: an assessment of available data. US Environmental Protection Agency, Environmental Sciences Research Laboratory, Ohio

    Google Scholar 

  85. Staples CA, Werner AF, Hoogheem TJ (1985) Assessment of priority pollutant concentrations in the United States using STORET database. Environ Toxicol Chem Int J 4(2):131–142

    Article  CAS  Google Scholar 

  86. Meijers A, Van der Leer RC (1976) The occurrence of organic micropollutants in the river Rhine and the river Maas in 1974. Water Res 10(7):597–604

    Article  CAS  Google Scholar 

  87. Zoeteman B et al (1980) Persistent organic pollutants in river water and ground water of the Netherlands. Chemosphere 9:231–249

    Article  CAS  Google Scholar 

  88. Van Zoest R, Van Eck GTM (1991) Occurrence and behaviour of several groups of organic micropollutants in the Scheldt estuary. Sci Total Environ 103(1):57–71

    Article  Google Scholar 

  89. Sontheimer H, Brauch H-J, Kühn W (1985) Impact of different types of organic micropollutants present on sources of drinking water on the quality of drinking water. Sci Total Environ 47:27–44

    Article  CAS  PubMed  Google Scholar 

  90. Feltes J et al (1990) Gas chromatographic and mass spectrometric determination of nitroaromatics in water. J Chromatogr A 518:21–40

    Article  CAS  Google Scholar 

  91. Sugiyama H et al (1978) Studies on environmental pollution by chemical substances. II. Determination of aromatic nitro compounds in river and sea water. Eisei Kagaku 24:11–18

    Article  CAS  Google Scholar 

  92. Duguet J et al (1988) Application of the ozone-hydrogen peroxide combination for the removal of toxic compounds from a groundwater. Organic micropollutants in the aquatic environment. Springer, pp 299–309

    Chapter  Google Scholar 

  93. Ellis DD et al (1982) Organic constituents of mutagenic secondary effluents from wastewater treatment plants. Arch Environ Contam Toxicol 11(3):373–382

    Article  CAS  PubMed  Google Scholar 

  94. Young DR et al (1983) Wastewater inputs and marine bioaccumulation of priority pollutant organics off southern California. Water Chlorination Environ Impact Health Effects 4:871–884

    CAS  Google Scholar 

  95. Swaminathan K et al (1987) Identification and quantification of organics in nitro aromatic manufacturing wastewaters. Indian Environ Health 29:32–38

    Google Scholar 

  96. Nelson CR, Hites RA (1980) Aromatic amines in and near the Buffalo River. Environ Sci Technol 14(9):1147–1149

    Article  CAS  Google Scholar 

  97. Huang J et al (2012) Effect of sulfate on anaerobic reduction of nitrobenzene with acetate or propionate as an electron donor. Water Res 46:4361–4370

    Article  CAS  PubMed  Google Scholar 

  98. Cai Z et al (2018) Reduction of nitrobenzene in aqueous and soil phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles. Chem Eng J 332:227–236

    Article  CAS  Google Scholar 

  99. Saxena H, Saxena AP (2010) Acute methaemoglobinaemia due to ingestion of nitrobenzene (paint solvent). Indian J Anaesth 54(2):160

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fu W et al (2008) Modeling the spill in the Songhua River after the explosion in the petrochemical plant in Jilin. Environ Sci Pollut Res 15(3):178–181

    Article  CAS  Google Scholar 

  101. Ghosh A et al (2010) Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2, 4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environ Sci Technol 44(3):1069–1077

    Article  CAS  PubMed  Google Scholar 

  102. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1989) International Agency for Research on Cancer, World Health Organization. Diesel and gasoline engine exhausts and some nitroarenes. World Health Organization

  103. Lübcke-von Varel U et al (2012) Identification and quantitative confirmation of dinitropyrenes and 3-nitrobenzanthrone as major mutagens in contaminated sediments. Environ Int 44:31–39

    Article  PubMed  Google Scholar 

  104. Zhao Y, Lin L, Hong M (2019) Nitrobenzene contamination of groundwater in a petrochemical industry site. Front Environ Sci Eng 13(2):1–9

    Article  Google Scholar 

  105. Derbalah A et al (2020) Microbial degradation of fenitrothion in Kurose river water, Hiroshima prefecture, Japan. Res J Environ Sci 14(1):5–17

    Article  CAS  Google Scholar 

  106. Xia K, Xie F, Ma Y (2014) Degradation of nitrobenzene in aqueous solution by dual pulse ultrasound enhanced electrochemical process. UltrasonSonochem 21:549–553

    CAS  Google Scholar 

  107. Ou C, Shen J, Zhang S, Mu Y, Han W, Sun X, Li J, Wang L (2016) Coupling of iron shavings into the anaerobic system for enhanced 2, 4-dinitroanisole reduction in wastewater. Water Res 101:457–466

    Article  CAS  PubMed  Google Scholar 

  108. Lotufo GR, Farrar J, Inouye LS, Bridges TS, Ringelberg DB (2001) Toxicity of sediment-associated nitroaromatic and cyclonitramine compounds to benthic invertebrates. Environ Toxicol Chem 20:1762–1771

    Article  CAS  PubMed  Google Scholar 

  109. Zhang SJ, Jiang H, Li MJ, Yu HQ, Yin H, Li QR (2007) Kinetics and mechanisms of radiolytic degradation of nitrobenzene in aqueous solutions. Environ Sci Technol 41:1977–1982

    Article  CAS  PubMed  Google Scholar 

  110. Yu X, Gong W, Liu X, Shi L, Han X, Bao H (2011) The use of carbon black to catalyze the reduction of nitrobenzenes by sulfides. J Hazard Mater 198:340–346

    Article  CAS  PubMed  Google Scholar 

  111. Gong W, Liu X, Xia S, Liang B, Zhang W (2016) Abiotic reduction of trifluralin andpendimethalin by sulfides in black-carbon-amended coastal sediments. J Hazard Mater 310:125–134

    Article  CAS  PubMed  Google Scholar 

  112. Faqeeh AJ, Ali T, Basahel SN, Narasimharao K (2018) Nanosized samarium modified Au-Ce0.5Zr0.5O2 catalysts for oxidation of benzyl alcohol. Mol Catal 456:10–21

    Article  CAS  Google Scholar 

  113. Jeong H, Kim J (2018) Methanol dehydrogenation reaction at Au@Pt catalysts: insight into the methanol electrooxidation. Electrochim Acta 283:11–17

    Article  CAS  Google Scholar 

  114. Yi QF, Chu H, Tang MX, Yang Z, Chen QH, Liu XP (2015) Carbon nanotube-supported binary silver-based nanocatalysts for oxygen reduction reaction in alkaline media. J Electroanal Chem 739:178–186

    Article  CAS  Google Scholar 

  115. Nguyen TTN, Huchede M, Blanco E, Morfin F, Rousset JL, Massin L, Aouine M, Bellière-Baca V, Millet JMM (2018) An attempt to improve Ag-based catalysts for allyl alcohol oxidative dehydrogenation to acrolein. Appl Catal A Gen 549:170–178

    Article  CAS  Google Scholar 

  116. Xing MY, Xu W, Dong CC, Bai YC, Zeng JB, Zhou Y, Zhang JL, Yin YD (2018) Metal sulfides as excellent cocatalysts for H2O2 decomposition in advanced oxidation processes. Chem 4(6):1359–1372

    Article  CAS  Google Scholar 

  117. Lin BY, Liu Y, Heng L, Ni J, Lin JX, Jiang LL (2018) Effect of barium and potassium promoter on Co/CeO2 catalysts in ammonia synthesis. J Rare Earths 36(7):703–707

    Article  CAS  Google Scholar 

  118. Yi QF, Zuo G (2012) Nanoporous Pt catalyst modified by Sn electrodeposition for electrochemical oxidation of formaldehyde. Chin J Chem Phys 30:151–156

    Article  CAS  Google Scholar 

  119. Thang HV, Pacchioni G, DeRita L, Christopher P (2018) Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J Catal 367:104–114

    Article  CAS  Google Scholar 

  120. Dong LL, Yan G, Ren SX, Zhang XQ, Lei TZ (2018) Platinum nanoparticle decorated poly(diallyldimethylammonium chloride)/cellulose nanocrystal nanohybrid for electrochemical sensing of dopamine. J Biobased Mater Bioenergy 12:519–524

    Article  CAS  Google Scholar 

  121. Qazi F, Hussain Z, Asghar S, Abbas G, Riaz M (2018) Malus domestica mediated synthesis of palladium nanoparticles and investigation of their catalytic activity towards the suzuki coupling reactions. Nanosci Nanotechnol Lett 10:373–377

    Article  Google Scholar 

  122. Xiao FX, Zhang X, Li YS, Liu Y (2017) Synthesis of Pd/C nanocatalyst for hydropurification of terephthalic acid with Pd nanocrystalline from aqueous colloidal solution. Nanosci Nanotechnol Lett 9(9):1432–1437

    Article  Google Scholar 

  123. Guo ZL, Liu Y, Liu Y, Chu W (2018) Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene. Appl Surf Sci 442:736–741

    Article  CAS  Google Scholar 

  124. Chen QH (2015) Effect of ligand on the formation and electrical activity of palladium nanocatalysts. Chin J Inorg Chem 31:1145–1152

    CAS  Google Scholar 

  125. Liu HX, Wang M, Zhang XQ, Ma JT, Lu GX (2018) High efficient photocatalytic hydrogen evolution from formaldehyde over sensitized Ag@Ag-Pd alloy catalyst under visible light irradiation. Appl Catal B Environ 237:563–573

    Article  CAS  Google Scholar 

  126. Ulas B, Caglar A, Sahin O, Kivrak H (2018) Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. J Colloid Interface Sci 532:47–57

    Article  CAS  PubMed  Google Scholar 

  127. Xin H, Zhou W, Zhou KY, Du XZ, Li D, Hu CW (2019) Controlling the growth of activated carbon supported nickel phosphide catalysts via adjustment of surface group distribution for hydrodeoxygenation of palmitic acid. Catal Today 319:182–190

    Article  CAS  Google Scholar 

  128. Li S, Wang X, Liu XR, Xu GQ, Han S, Mu XF (2015) Aqueous-phase hydrogenation of biomass-derived itaconic acid to methyl-γ-butyrolactone over Pd/C catalysts: effect of pretreatments of active carbon. Catal Commun 61:92–96

    Article  CAS  Google Scholar 

  129. Wang L, Zhou Y, Liu QF, Guo Y, Lu GZ (2010) Effect of surface properties of activated carbon on CO oxidation over supported Wacker-type catalysts. Catal Today 153:184–188

    Article  CAS  Google Scholar 

  130. Zhang D, Shi S, Pittman CU, Jiang D, Che W, Gai Z, Howe JY, More KL, Antonyraj A (2012) Versatile and biomass synthesis of iron-based nanoparticles supported on carbon matrix with high iron content and tunable reactivity. J Nanoparticle Res 14:1–12

    Article  Google Scholar 

  131. Ukanwa KS, Patchigolla K, Sakrabani R, Anthony E, Mandavgane S (2019) A review of chemicals to produce activated carbon from agricultural waste biomass. Sustainability 11:6204

    Article  CAS  Google Scholar 

  132. Alonso F, Moglie Y, Radivoy G, Yus M (2011) Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon. Org Biomol Chem 9:6385–6395

    Article  CAS  PubMed  Google Scholar 

  133. Jadhav AJ, Srivastava V (2013) Adsorbed solution theory-based modeling of binary adsorption of nitrobenzene, aniline and phenol onto granulated activated carbon. Chem Eng J 229:450–459

    Article  CAS  Google Scholar 

  134. Pan J, Guan B (2010) Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylammonium bromide. J Hazard Mater 183:341–346

    Article  CAS  PubMed  Google Scholar 

  135. Watson VJ, Nieto D, Logan BE (2013) Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance. Environ Sci Technol 47:6704–6710

    Article  CAS  PubMed  Google Scholar 

  136. Arami-Niya A, Duad WD, Mjalli FS, Abnisa F, Shafeeyan MS (2012) Production of microporous palm shell based activated carbon for methane adsorption: Modeling and optimization using response surface methodology. Chem Eng Res Des 90:776–784

    Article  CAS  Google Scholar 

  137. Daoud M, Benturki O, Fontana S, Rogaume Y, Girods P (2019) Energy and matter balance of process of activated carbon production from Algerian agricultural wastes: date palm rachis and jujube stones. Biomass Convers Biorefinery 11:1537–1554

    Article  Google Scholar 

  138. Ahmadpour A, Do D (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 34:471–479

    Article  CAS  Google Scholar 

  139. Daoud M, Benturki O, Girods P, Donnot A, Fontana S (2019) Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater. Microchem J 148:493–502

    Article  CAS  Google Scholar 

  140. Serp P, Figueiredo J (2009) Carbon materials for catalysis. John Wiley & Sons, Hoboken, NJ, USA

    Google Scholar 

  141. Zhu H et al (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172(2–3):1591–1596

    Article  CAS  PubMed  Google Scholar 

  142. Chen H et al (2016) Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water. Chemosphere 146:32–39

    Article  CAS  PubMed  Google Scholar 

  143. Jiao W et al (2016) Degradation of nitrobenzene-containing wastewater by carbon nanotubes immobilized nanoscale zerovalent iron. J Nanopart Res 18(7):1–9

    Article  Google Scholar 

  144. Hu Y et al (2013) Size-controlled synthesis of highly stable and active Pd@ SiO2 core–shell nanocatalysts for hydrogenation of nitrobenzene. J Phys Chem C 117(17):8974–8982

    Article  CAS  Google Scholar 

  145. Kim Y-J et al (2015) Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline. Appl Surf Sci 357:2112–2120

    Article  CAS  Google Scholar 

  146. Chen L et al (2017) Catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal–organic frameworks. Chem Commun 53(6):1184–1187

    Article  CAS  Google Scholar 

  147. Chen J et al (2015) High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81:826–834

    Article  CAS  Google Scholar 

  148. Sadjadi S et al (2019) Pd@ magnetic carbon dot immobilized on the cyclodextrin nanosponges-biochar hybrid as an efficient hydrogenation catalyst. ChemistrySelect 4(24):7300–7307

    Article  CAS  Google Scholar 

  149. Gu H et al (2021) Removal of nitrobenzene from aqueous solution by graphene/biochar supported nanoscale zero-valent-iron: Reduction enhancement behavior and mechanism. Sep Purif Technol 275:119146

    Article  CAS  Google Scholar 

  150. Shaheen SM, Niazi N, Hassan NE, Bibi I, Wang H, Tsang DC, Ok YS, Bolan N, Rinklebe J (2018) Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev 64(4):216–247

    Article  Google Scholar 

  151. Werner S, Kaetzl K, Wichern M, Marschner B (2018) Biochar inwaste water treatment to produce safe irrigation water, recovernutrients and reduce environmental impacts of waste water irrigation. In: EGU general assembly conference, p 15820

  152. Lee DJ, Cheng Y, Wong RJ, Wang XD (2018) Adsorption removal of natural organic matters in waters using biochar. Biores Technol 260:413–416

    Article  CAS  Google Scholar 

  153. Qambrani NA, Rahman M, Won S, Shim S, Ra C (2017) Bio char properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sustain Energy Rev 79:255–273

    Article  CAS  Google Scholar 

  154. Pradeep NV, Anupama S, Navya K, Shalini HN, Idris M, Hampannavar US (2015) Biological removal of phenol from wastewaters: a mini review. Appl Water Sci 5:105–112

    Article  CAS  Google Scholar 

  155. FarhodChasib Al-Jiboury K (2010) Study the adsorption phenomena of phenol from industrial wastewater using commercial powdered activated carbon by using isotherm models. Eng Technol J 28(6):1186–1195

    Google Scholar 

  156. Mubarak NM, Sahu J, Abdullah EC, Jayakumar NS (2016) Palm oil empty fruit bunch based magnetic biochar composite comparison for synthesis by microwave-assisted and conventional heating. J Anal Appl Pyrol 120:521–528

    Article  CAS  Google Scholar 

  157. Thines KR, Abdullah E, Mubarak NM, Ruthiraan M (2017) Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renew Sust Energ Rev 67:257–276

    Article  CAS  Google Scholar 

  158. Qiu Y, Zheng Z, Zhou Z, Daniel Sheng G (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100:5348–5351

    Article  CAS  PubMed  Google Scholar 

  159. Ma H, Li J-B, Liu W-W, Miao M, Cheng BJ, Zhu SW (2015) Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal. Bioresour Technol 190:13–20

    Article  CAS  PubMed  Google Scholar 

  160. Devi P, Saroha A (2014) Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour Technol 169:525–531

    Article  CAS  PubMed  Google Scholar 

  161. Sihem A et al (2012) Batch adsorption of phenol from industrial waste water using cereal by-products as a new adsrbent. Energy Proc 18:1135–1144

    Article  Google Scholar 

  162. Ayotte P, Scott R, Stevenson KP, Dohnlek Z, Kimmel GA, Kay BD (2001) Effect of porosity on the adsorption, desorption, trapping and release of volatile gases by amorphous solid water. J Geophys Res 106:33387–33392

    Article  CAS  Google Scholar 

  163. Çalışkan M et al (2021) Preparation and application of a hydrochar-based palladium nanocatalyst for the reduction of nitroarenes. Molecules 26(22):6859

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sadjadi S, Léger AM, Monflier E, Heravi MM (2019) Eggplant-derived biochar- halloysite nanocomposite as supports of Pd nanoparticles for the catalytic hydrogenation of nitroarenes in presence of cyclodextrin. ACS Sustain Chem Eng 7(7):6720–6731

    Article  CAS  Google Scholar 

  165. Lopes RP et al (2021) Magnetized biochar as a gold nanocatalyst support for p-nitrophenol reduction. J Braz Chem Soc 32:1680–1686

    CAS  Google Scholar 

  166. Behera M et al (2022) Ag/biochar nanocomposites demonstrate remarkable catalytic activity towards reduction of p-nitrophenol via restricted agglomeration and leaching characteristics. Colloids Surf, A 642:128616

    Article  CAS  Google Scholar 

  167. Zarei M, Mohammadzadeh I, Saidi K, Sheibani H (2022) Fabrication of biochar@ Cu–Ni nanocatalyst for reduction of aryl aldehyde and nitroarene compounds. Biomass Convers Biorefinery 10:1–16

    Google Scholar 

  168. Min L et al (2021) Efficient degradation of p-nitrophenol by Fe@ pomelo peel-derived biochar composites and its mechanism of simultaneous reduction and oxidation process. Chemosphere 267:129213

    Article  CAS  PubMed  Google Scholar 

  169. Zarei M et al (2021) Green synthesis of Ag nanoparticles on the modified graphene oxide using Capparis spinosa fruit extract for catalytic reduction of organic dyes. Inorg Chem Commun 123:108327

    Article  CAS  Google Scholar 

  170. Akbari R (2021) Green synthesis and catalytic activity of copper nanoparticles supported on TiO2 as a highly active and recyclable catalyst for the reduction of nitro-compounds and degradation of organic dyes. J Mater Sci Mater Electron 32(12):15801–15813

    Article  CAS  Google Scholar 

  171. Fan S, Zhang L (2021) Production and characterization of tea waste–based biochar and its application in treatment of Cd-containing wastewater. Biomass Convers Biorefinery 11(5):1719–1732

    Article  CAS  Google Scholar 

  172. Destyorini F et al (2022) High graphitic carbon derived from coconut coir waste by promoting potassium hydroxide in the catalytic graphitization process for lithium-ion battery anodes. Energy Fuels 36:5444–5455

    Article  CAS  Google Scholar 

  173. Shan R et al (2020) Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater Sci Semicond Process 114:105088

    Article  CAS  Google Scholar 

  174. Weidner E et al (2022) Hybrid metal oxide/biochar materials for wastewater treatment technology: a review. ACS Omega 7(31):27062–27078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Huggins TM et al (2016) Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res 94:225–232

    Article  CAS  PubMed  Google Scholar 

  176. Goutam SP et al (2020) Green synthesis of nanoparticles and their applications in water and wastewater treatment. Bioremediation of industrial waste for environmental safety. Springer, pp 349–379

    Chapter  Google Scholar 

  177. Han Z et al (2015) Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Res 70:394–403

    Article  CAS  PubMed  Google Scholar 

  178. Snoussi Y et al (2022) Facile synthesis of silver decorated biochar as a novel and highly active biosourced anti-kinetoplastid agent. Mater Today Commun 32:104126

    Article  CAS  Google Scholar 

  179. Khalil AM et al (2021) Copper/nickel-decorated olive pit biochar: one pot solid state synthesis for environmental remediation. Appl Sci 11(18):8513

    Article  CAS  Google Scholar 

  180. Liu Q et al (2020) The promotion effect of biochar on electrochemical degradation of nitrobenzene. J Clean Prod 244:118890

    Article  CAS  Google Scholar 

  181. Wei G et al (2019) Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene. Front Environ Sci Eng 13(4):1–11

    Article  Google Scholar 

  182. Huang H-B, Wang Y, Jiao W-B, Cai F-Y, Shen M, Zhou S-G, Cao H-L, Lü J, Cao R (2018) Lotus-leaf-derived activated-carbon-supported nano-CdS as energy efficient photocatalysts under visible irradiation. ACS Sustain Chem Eng 6:7871–7879

    Article  CAS  Google Scholar 

  183. Santos JL et al (2020) Metal catalysts supported on biochars: Part I synthesis and characterization. Appl Catal B 268:118423

    Article  CAS  Google Scholar 

  184. González-Castaño M, Morales C, de Miguel JN, Boelte JH, Klepel O, Flege JI, Arellano-García H (2021) Are Ni/and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts. Green Energy Environ. https://doi.org/10.1016/j.gee.2021.05.007

    Article  Google Scholar 

  185. Kumar A, Kumar J, Bhaskar T (2020) High surface area biochar from Sargassum tenerrimum as potential catalyst support for selective phenol hydrogenation. Environ Res 186:109533

    Article  CAS  PubMed  Google Scholar 

  186. Dong J, Ding L, Chi Z, Lei J, Su Y (2017) Kinetics of nitrobenzene degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by emulsified vegetable oil. J Environ Sci 54:206–216

    Article  CAS  Google Scholar 

  187. Jagadeesh RV, Surkus A-E, Junge H, Pohl M-M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M (2013) Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342:1073–1076

    Article  CAS  PubMed  Google Scholar 

  188. Mukherjee A, Kundu S, Chatterjee D, Dhak D (2021) A critical review on photoreduction using metal–organic frameworks: kinetics, pH and mechanistic studies and anthropogenic/natural sources of Cr(VI). Chem Afr 1–14

  189. Wang AJ, Cheng H, Liang B, Ren NQ, Cui D, Lin N, Kim BH, Rabaey K (2011) Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol 45:10186–10193

    Article  CAS  PubMed  Google Scholar 

  190. Woolf D et al (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(1):1–9

    Article  Google Scholar 

  191. Creamer AE, Gao B, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179

    Article  CAS  Google Scholar 

  192. Melton ED, Swanner E, Behrens S, Schmidt C, Kappler A (2014) The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol 12:797–808

    Article  CAS  PubMed  Google Scholar 

  193. Pozun ZD et al (2013) A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J Phys Chem C 117(15):7598–7604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology; Government of West Bengal vide project sanction (No. 674(sanc)/ST/P/S&T/15G/5/2016) dated 09/11/2016 for financial support. The authors would like to thank the Department of Science and Technology, New Delhi, Government of India vide project sanction no. DST, SEED/TITE/2019/84 for financial support. AP thanks University Grants Commission, New Delhi, Govt. of India for providing him with UGC-BSR Research Start-Up-Grant [No.F.30-557/2021(BSR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Dhak.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Mukherjee, A., Mahato, A. et al. A Review on Chemoselective Reduction of Nitroarenes for Wastewater Remediation Using Biochar Supported Metal Catalysts: Kinetic and Mechanistic Studies. Chemistry Africa 6, 561–578 (2023). https://doi.org/10.1007/s42250-022-00534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00534-x

Keywords

Navigation