Skip to main content
Log in

Simultaneous Removal of Copper and Lead from Industrial Effluents Using Corn Cob Activated Carbon

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the adsorption of Pb2+ and Cu2+ from aqueous solution in single and binary systems, and from industrial effluents by corn cob-activated carbon. To achieve this goal, the synthesis of activated carbon was optimized. The significant factors influencing the adsorption process namely the contact time, initial concentration of Pb and Cu ions, solution pH, and adsorbent mass were well examined. The synthesized activated carbon with an impregnation ratio equal to 1 exhibited high specific surface area of 810 m2/g and contained mainly acid functions with a zero charge point pH equal to 3.8. The Fourier transform infrared spectroscopy revealed the dominance of chemical bonds as well as functional groups on the activated carbon surface. The optimum pH values were found to be 5.3 for Pb2+ and 5.7 for Cu2+, with removal efficiencies of 77.5% and 86.3%, respectively. This study showed that the nonlinear regression was the best model to describe the kinetic and isotherm adsorption of Pb2+ and Cu2+. The adsorption processes of Pb2+ and Cu2+ are governed by intra-particle diffusion. In the binary solution, Pb2+ and Cu2+adsorption rates decreased more than in the single one. This study revealed that corn cob-activated carbon has successfully removed Cu2+ and Pb2+ from industrial effluents, with percentages ranging from 29.9% to 32.1%, and from 41.8% to 48.9%, respectively. With regard to the obtained results, the prepared corn cob activated carbons in Côte d’Ivoire are enabling promising applications for the removal of metal ions from water/wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig.7
Fig.8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy J, Naidu R (2015) Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem Eng J 270:393–404. https://doi.org/10.1016/j.cej.2015.02.047

    Article  CAS  Google Scholar 

  2. Umeh C, Asegbeloyin JN, Akpomie KG, Oyeka EE, Ochonogor AE (2020) Adsorption properties of tropical soils from Awka North Anambra Nigeria for lead and cadmium ions from aqueous media. Chem Afr 3:199–210. https://doi.org/10.1007/s42250-019-00109-3

    Article  CAS  Google Scholar 

  3. Uauy R, Maass A, Araya M (2008) Estimating risk from copper excess in human populations. Am J Clin Nutr 88:867–871. https://doi.org/10.1093/ajcn/88.3.867S

    Article  Google Scholar 

  4. Iyer S, Sengupta C, Velumani A (2015) Lead toxicity: an overview of prevalence in Indians. Clin Chim Acta 451:161–164. https://doi.org/10.1016/j.cca.2015.09.023

    Article  CAS  PubMed  Google Scholar 

  5. Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. Biomed Res Int 2014:1–8. https://doi.org/10.1155/2014/840547

    Article  CAS  Google Scholar 

  6. Shil S, Singh UK (2019) Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecol Indic 106:1–12. https://doi.org/10.1016/j.ecolind.2019.105455

    Article  CAS  Google Scholar 

  7. Ngure V, Lelo F, Obwanga B (2017) Heavy metal pollution from migori gold mining area, Kenya: health implications for consumers of fish and water. J Nat Sci Res 7:46–53

    Google Scholar 

  8. Atibu EK, Devarajan N, Thevenon F, Mwanamoki PM, Tshibanda JB, Mpiana PT, Prabakar K, Mubedi JI, Wildi W, Poté J (2013) Concentration of metals in surface water and sediment of Luilu and Musonoie Rivers, Kolwezi-Katanga, Democratic Republic of Congo. Appl Geochem 39:26–32. https://doi.org/10.1016/j.apgeochem.2013.09.021

    Article  CAS  Google Scholar 

  9. Kazemipour M, Ansari M, Tajrobehkar S, Majdzadeh M, Kermani HR (2008) Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. J Hazard Mater 150:322–327. https://doi.org/10.1016/j.jhazmat.2007.04.118

    Article  CAS  PubMed  Google Scholar 

  10. Fato FP, Li DW, Zhao LJ, Qiu K, Long YT (2019) Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. ACS Omega 4:7543–7349. https://doi.org/10.1021/acsomega.9b00731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Usman TM, Xintai S, Mengqi Z, Yinnian L, Ronglan W, Dejun C (2019) Preparation of hydroxypropyl-cyclodextrin-graphene / Fe3O4 and its adsorption properties for heavy metals. Surf Interfaces 16:43–49. https://doi.org/10.1016/j.surfin.2019.04.007

    Article  CAS  Google Scholar 

  12. Borth KW, Galdino CW, Teixeira VDC, Anaissi FJ (2021) Iron oxide nanoparticles obtained from steel waste recycling as a green alternative for Congo red dye fast adsorption. Appl Surf Sci 546:149126–214939. https://doi.org/10.1016/j.apsusc.2021.149126

    Article  CAS  Google Scholar 

  13. KaimBillah ER, Islam MA, Agunaou M, Soufiane A (2021) A promising chitosan/fluorapatite composite for efficient removal of lead (II) from an aqueous solution. Arab J Geosci 14:1134–1145. https://doi.org/10.1007/s12517-021-07473-w

    Article  CAS  Google Scholar 

  14. Kumar R, Bhattacharya S, Sharma P (2021) Novel insights into adsorption of heavy metal ions using magnetic graphene composites. J Environ Chem Eng 9:106212–106228. https://doi.org/10.1016/j.jece.2021.106212

    Article  CAS  Google Scholar 

  15. Zhang Z, Wang T, Zhang H, Liu Y, Xing B (2021) Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci Total Environ 757:1–37. https://doi.org/10.1016/j.scitotenv.2020.143910

    Article  CAS  Google Scholar 

  16. Ngoran KPDA, Diabaté D, Yao KM, Kouassi NLB, Gnonsoro UP, Kinimo KC, Trokourey A (2018) Lead and cadmium removal from natural freshwater using mixed activated carbons from cashew and shea nut shells. Arab J Geosci 11:498–510. https://doi.org/10.1007/s12517-018-3862-2

    Article  CAS  Google Scholar 

  17. Song M, Wei Y, Cai S, Yu L, Zhong Z, Jin B (2018) Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents. Sci Total Environ 618:1416–1422. https://doi.org/10.1016/j.scitotenv.2017.09.268

    Article  CAS  PubMed  Google Scholar 

  18. Ghorbani F, Kamari S, Zamani S, Akbari S, Salehi M (2020) Optimization and modeling of aqueous Cr(VI) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology. Surf Interfaces 18(100444):100470. https://doi.org/10.1016/j.surfin.2020.100444

    Article  CAS  Google Scholar 

  19. Corral-Bobadilla M, Lostado-Lorza R, Somovilla-Gomez F, Escribano-García R (2021) Effective use of activated carbon from olive stone waste in the biosorption removal of Fe(III) ions from aqueous solutions. J Clean Prod 294:126332. https://doi.org/10.1016/j.jclepro.2021.126332

    Article  CAS  Google Scholar 

  20. Imran-Shaukat M, Wahi R, Ngaini Z (2022) The application of agricultural wastes for heavy metals adsorption: a meta-analysis of recent studies. Bioresour Technol Rep 17:100902–100916. https://doi.org/10.1016/j.biteb.2021.100902

    Article  CAS  Google Scholar 

  21. Harussani MM, Sapuan SM (2022) Development of Kenaf biochar in engineering and agricultural applications. Chem Afr 5:1–17. https://doi.org/10.1007/s42250-021-00293-1

    Article  CAS  Google Scholar 

  22. Adeniyi AG, Ighalo JO, Onifade DV (2020) Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and Albedo: product quality and potential applications. Chem Afr 3:439–448. https://doi.org/10.1007/s42250-020-00119-6

    Article  CAS  Google Scholar 

  23. Taiwo AF, Chinyere NJ (2016) Sorption characteristics for multiple adsorption of heavy metal ions using activated carbon from Nigerian Bamboo. J Mater Sci Eng 4:39–48. https://doi.org/10.4236/msce.2016.44005

    Article  CAS  Google Scholar 

  24. Jain M, Garg VK, Kadirvelu K, Sillanpää M (2016) Adsorption of heavy metals from multi-metal aqueous solution by sunflower plant biomass-based carbons. Int J Environ Sci Technol 13:493–500. https://doi.org/10.1007/s13762-015-0855-5

    Article  CAS  Google Scholar 

  25. Saeed A, Iqbal M, Akhtar MW (2005) Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater 117:65–73. https://doi.org/10.1016/j.jhazmat.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  26. Chiban M, Soudani A, Sinan F, Persin M (2011) Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant. Colloids Surf B Biointerfaces 82:267–276. https://doi.org/10.1016/j.colsurfb.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  27. Bohli T, Ouederni A, Villaescusa I (2017) Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions. Euro-Mediterr J Environ Integr 2:19–34. https://doi.org/10.1007/s41207-017-0030-0

    Article  Google Scholar 

  28. Kebede TG, Mengistie AA, Dube S, Nkambule TTI, Nindi MM (2018) Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder. J Environ Chem Eng 6:1378–1389. https://doi.org/10.1016/j.jece.2018.01.012

    Article  CAS  Google Scholar 

  29. Ma J, Li T, Liu Y, Cai T, Wei Y, Dong W, Chen H (2019) Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems. Bioresour Technol 290:121793–121800. https://doi.org/10.1016/j.biortech.2019.121793

    Article  CAS  PubMed  Google Scholar 

  30. Kamari AQ, Yusoff SNM, Abdullah F, Putra WP (2014) Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue : Adsorption and characterisation studies. J Environ Chem Eng 2:1912–1919. https://doi.org/10.1016/j.jece.2014.08.014

    Article  CAS  Google Scholar 

  31. Shim J, Velmurugan P, Oh BT (2015) Extraction and physical characterization of amorphous silica made from corn cob ash at variable pH conditions via sol gel processing. J Ind Eng Chem 28:110–116. https://doi.org/10.1016/j.jiec.2015.05.029

    Article  CAS  Google Scholar 

  32. Campo NF, Guedes GAJC, Oliveira LPS, Gama BMV, Sales DCS, Rodríguez-Díaz JM, Barbosa CMBM, Duarte MMMB (2020) Competitive adsorption between Cu2+ and Ni2+ on corn cob activated carbon and the difference of thermal effects on mono and bicomponent systems. J Environ Chem Eng 8:1–49. https://doi.org/10.1016/j.jece.2020.104232

    Article  CAS  Google Scholar 

  33. Rodríguez MH, Yperman J, Carleer R, Maggen J, Daddi D, Gryglewicze G, Bart Bruggen BVD, Hernández JF, Calvis AO (2018) Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon. J Environ Chem Eng 6:1161–1170. https://doi.org/10.1016/j.jece.2017.12.045

    Article  CAS  Google Scholar 

  34. Özsin G, Kılıç M, Apaydın-Varol E, Pütün AE (2019) Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: equilibrium, kinetic, and thermodynamic studies. Appl Water Sci 9:56–70. https://doi.org/10.1007/s13201-019-0942-8

    Article  CAS  Google Scholar 

  35. Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131. https://doi.org/10.1016/j.jtice.2015.02.032

    Article  CAS  Google Scholar 

  36. Kra DO, Allou NB, Atheba P, Drogui P, Trokourey A (2019) Preparation and Characterization of Activated Carbon Based on Wood (Acacia auriculeaformis, Côte d’Ivoire). J Encapsulation Adsorpt Sci 9:63–82. https://doi.org/10.4236/jeas.2019.92004

    Article  CAS  Google Scholar 

  37. Boehm H (1966) Chemical Identification of Surface Groups. Advances in Catalysis. Academic Press, London, pp 179–274. https://doi.org/10.1016/S0360-0564(08)60354-5

    Chapter  Google Scholar 

  38. ASTM D2866-94, (1999) Standard test method for total ash content of activated carbon. https://doi.org/10.1520/D2866-94R99

  39. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetensk Handl 24:1–39

    Google Scholar 

  40. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  41. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60. https://doi.org/10.1061/JSEDAI.0000430

    Article  Google Scholar 

  42. Langmuir I (1906) The adsorption of gases on plane surfaces of glass mica and platinum. J Am Chem Soc 40:1361–1403

    Article  Google Scholar 

  43. Freundlich HMF (1906) Über die adsorption in lösungen.Z. PhysChem-Frankfurt 57A:385–470

    Google Scholar 

  44. El-Sayed GO, Yehia MM, Asaad AA (2014) Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resour Ind 7–8:66–75. https://doi.org/10.1016/j.wri.2014.10.001

    Article  Google Scholar 

  45. Sych NV, Trofymenko SI, Poddubnaya OI, Tsyba MM, Sapsay VI, Klymchuk DO, Puziy AM (2012) Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl Surf Sci 261:75–82. https://doi.org/10.1016/j.apsusc.2012.07.084

    Article  CAS  Google Scholar 

  46. Altintig E, Arabaci G, Altundag H (2016) Preparation and characterization of the antibacterial efficiency of silver loaded activated carbon from corncobs. Surf Coat Technol 304:63–67. https://doi.org/10.1016/j.surfcoat.2016.06.077

    Article  CAS  Google Scholar 

  47. Qin T, Song M, Jiang K, Zhou J, Zhuang W, Chen Y, Liu D, Chen X, Ying H, Wu J (2017) Efficient decolorization of citric acid fermentation broth using carbon materials prepared from phosphoric acid activation of hydrothermally treated corncob. RSC Adv 7:37112–371120. https://doi.org/10.1039/c7ra04813k

    Article  CAS  Google Scholar 

  48. Kumar A, Jena HM (2016) Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results Phys 6:651–658. https://doi.org/10.1016/j.rinp.2016.09.012

    Article  Google Scholar 

  49. Andia JM, Larre AL, Salcedo J, Reyes J, Lopez L, Yokoyama L (2020) Synthesis and characterization of chemically activated carbon from Passiflora ligularis, Inga feuilleei and native plants of South America. J Environ Chem Eng 8:103892–103934. https://doi.org/10.1016/j.jece.2020.103892

    Article  CAS  Google Scholar 

  50. Xu J, Chen L, Qu H, Jiao Y, Xie J, Xing G (2014) Preparation and characterization of activated carbon from reedy grassleaves by chemical activation with H3PO4. Appl Surf Sci 320:674–680. https://doi.org/10.1016/j.apsusc.2014.08.178

    Article  CAS  Google Scholar 

  51. Sun Y, Yue Q, Gao B, Gao Y, Xu X, Li Q, Wang Y (2014) Adsorption and cosorption of ciprofloxacin and Ni(II) on activated carbon-mechanism study. Taiwan Inst Chem Eng 45:681–688. https://doi.org/10.1016/j.jtice.2013.05.013

    Article  CAS  Google Scholar 

  52. Jain SN, Shaikh Z, Mane VS, Vishnoi S, Mawal VN, Patel OR, Bhandari PS, Gaikwad MS (2019) Nonlinear regression approach for acid dye remediation using activated adsorbent: Kinetic, isotherm, thermodynamic and reusability studies. Microchem J 148:605–615. https://doi.org/10.1016/j.cej.2015.02.047

    Article  CAS  Google Scholar 

  53. Gholamiyan S, Hamzehloo M, Farrokhnia A (2020) RSM optimized adsorptive removal of erythromycin using magnetic activated carbon: adsorption isotherm, kinetic modeling and thermodynamic studies. Sustain Chem Pharm 17:100309–100311. https://doi.org/10.1016/j.scp.2020.100309

    Article  Google Scholar 

  54. Nagy B, Manzatu C, Mânzatu A, Indolean C, Lucian BT, Majdik C (2017) Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus Macrofungus. Arab J Chem 10:S3569–S3579. https://doi.org/10.1016/j.arabjc.2014.03.004

    Article  CAS  Google Scholar 

  55. Demirbas E, Dizge N, Sulak MT, Kobya M (2009) Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem Eng J 148:480–487. https://doi.org/10.1016/j.cej.2008.09.027

    Article  CAS  Google Scholar 

  56. Zhan W, Xu C, Qian G, Huang G, Tang X, Lin B (2018) Adsorption of Cu(II), Zn(II), and Pb(II) from aqueous single and binary metal solutions by regenerated cellulose and sodium alginate chemically modified with polyethyleneimine. RSC Adv 8:18723–18733. https://doi.org/10.1039/c8ra02055h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the Director of Centre de Recherches Oceanologiques, Abidjan, Côte d’Ivoire, for his encouragement and support. Unconditional help (to determine metal concentrations) from the Director of Laboratoire National d’Appui au Développement Agricole (LANADA), Abidjan, Côte d’Ivoire, is gratefully acknowledged. A special thank you goes to the reviewers for their critical contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N’guessan Louis Berenger Kouassi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict to interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 181 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouassi, N.L.B., N’goran, K.P.D.A., Blonde, L.D. et al. Simultaneous Removal of Copper and Lead from Industrial Effluents Using Corn Cob Activated Carbon. Chemistry Africa 6, 733–745 (2023). https://doi.org/10.1007/s42250-022-00432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00432-2

Keywords

Navigation