Skip to main content

Advertisement

Log in

Date Stone Functionalized with 3-Aminopropyltriethoxysilane as a Potential Biosorbent for Heavy Metal Ions Removal from Aqueous Solution

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A novel biosorbent based on date stones (DS) and 3-aminopropyltriethoxysilane (APTES) was successfully elaborated by a simple chemical grafting of APTES on the surface of DS. The purpose of the present study was to examin the feasibility of the synthesized biomaterial in removing heavy metal ions from aqueous solutions. The chemical structure and the morphology of the DS@APTES were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy combined with an energy-dispersive X-ray spectroscopy (SEM–EDS). The adsorption parameters, such as pH, adsorbent dose, contact time, initial metal ion concentration and temperature were optimized. It has been found that the increase in contact time and the amount of adsorbent provide an enhancement of the removal capacity, while, the increase in heavy metal concentration, as well as temperature, can lead to a decrease in the adsorption efficiency. Under optimal conditions (temperature of 25 °C, pH 5.5, initial metal concentration of 10 mg L–1, 120 min contact time and adsorbent dosage of 1 g L–1), the synthesized DS@APTES exhibited high removal efficiencies of 95.29%, 72.35%, and 67.64% for Zn (II), Cu (II) and Pb (II) respectively. The Adsorption process follows both Langmuir and Freundlich isotherms models (r2 > 0.96) and was well described by the pseudo-second-order kinetic model which specifies the chemisorption nature. Furthermore, the calculated thermodynamic parameters have suggested that the heavy metals adsorption on DS@APTES is spontaneous and exothermic. This study illustrates that the prepared material is a promising adsorbent for the removal of heavy metal ions from aqueous solutions with the demonstrated high adsorption capacity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mohammed AS, Kapri A, Goel R (2011) Heavy metal pollution: source impact, and remedies. Biomanage Metal Contain Soil. https://doi.org/10.1007/978-94-007-1914-9_1

    Article  Google Scholar 

  2. Singh A, Prasad SM (2014) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 121(12):353–366. https://doi.org/10.1007/S13762-014-0542-Y

    Article  Google Scholar 

  3. Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, Chowdhary P (2019) Heavy metal contamination: an alarming threat to environment and human health. Environ Biotechnol Sustain Futur. https://doi.org/10.1007/978-981-10-7284-0_5

    Article  Google Scholar 

  4. Nkuigue Fotsing P, Bouazizi N, Djoufac Woumfo E, Mofaddel N, Le Derf F, Vieillard J (2021) Investigation of chromate and nitrate removal by adsorption at the surface of an amine-modified cocoa shell adsorbent. J Environ Chem Eng 9:104618. https://doi.org/10.1016/J.JECE.2020.104618

    Article  CAS  Google Scholar 

  5. Jiang C, Wang X, Hou B, Hao C, Li X, Wu J (2020) Construction of a Lignosulfonate-lysine hydrogel for the adsorption of heavy metal ions. J Agric Food Chem 68:3050–3060. https://doi.org/10.1021/ACS.JAFC.9B07540

    Article  CAS  PubMed  Google Scholar 

  6. Environmental Pollution Control Engineering—C. S. Rao—Google Books (2020)

  7. Pedersen KB, Jensen PE, Ottosen LM, Lejon T (2015) An optimised method for electrodialytic removal of heavy metals from harbour sediments. Electrochim Acta 173:432–439. https://doi.org/10.1016/J.ELECTACTA.2015.05.050

    Article  CAS  Google Scholar 

  8. Matilainen A, Iivari P, Sallanko J, Heiska E, Tuhkanen T (2006) The role of ozonation and activated carbon filtration in the natural organic matter removal from drinking water. Environ Technol 27:1171–1180. https://doi.org/10.1080/09593332708618731

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy J, Naidu R (2015) Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem Eng J 270:393–404. https://doi.org/10.1016/J.CEJ.2015.02.047

    Article  CAS  Google Scholar 

  10. Oubekka LD, Djelali NE, Chaleix V, Gloaguen V (2016) Adsorption of lead (II) and cadmium (II) on raw and modified date pits by tempo/NaBr/NaOCl as adsorbent. Rev Roum Chim 61:175–185

    Google Scholar 

  11. Culita DC, Simonescu CM, Patescu RE, Dragne M, Stanica N, Oprea O (2016) o-Vanillin functionalized mesoporous silica—coated magnetite nanoparticles for efficient removal of Pb(II) from water. J Solid State Chem 238:311–320. https://doi.org/10.1016/J.JSSC.2016.04.003

    Article  CAS  Google Scholar 

  12. Gao Y, Xu S, Yue Q, Wu Y, Gao B (2016) Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater. J Taiwan Inst Chem Eng 61:327–335. https://doi.org/10.1016/J.JTICE.2015.12.023

    Article  CAS  Google Scholar 

  13. Ali I (2007) Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 16(1):2661–2667. https://doi.org/10.1038/nprot.2006.370

    Article  CAS  Google Scholar 

  14. Ren C, Ding X, Li W, Wu H, Yang H (2017) Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups. J Chem Eng Data 62:1865–1875. https://doi.org/10.1021/ACS.JCED.7B00198

    Article  CAS  Google Scholar 

  15. Lei Y, Chen F, Luo Y, Zhang L (2014) Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions. Chem Phys Lett 593:122–127. https://doi.org/10.1016/j.cplett.2013.12.066

    Article  CAS  Google Scholar 

  16. Rezgui A, Guibal E, Boubakera T (2017) Sorption of Hg(II) and Zn(II) ions using lignocellulosic sorbent (date pits). Can J Chem Eng 95:775–782. https://doi.org/10.1002/CJCE.22728

    Article  CAS  Google Scholar 

  17. Al-Essa K, Khalili F (2018) Heavy metals adsorption from aqueous solutions onto unmodified and modified jordanian kaolinite clay: batch and column techniques. Am J Appl Chem 6:25–34. https://doi.org/10.11648/j.ajac.20180601.14

    Article  CAS  Google Scholar 

  18. El Messaoudi N, El Khomri M, Goodarzvand Chegini Z, Chlif N, Dbik A, Bentahar S, Iqbal M, Jada A, Lacherai A (2021) Desorption study and reusability of raw and H2SO4 modified jujube shells (Zizyphus lotus) for the methylene blue adsorption. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1912338

    Article  Google Scholar 

  19. Kadirvelu K, Kavipriya M, Karthika C, Radhika M, Vennilamani N, Pattabhi S (2003) Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour Technol 87:129–132. https://doi.org/10.1016/S0960-8524(02)00201-8

    Article  CAS  PubMed  Google Scholar 

  20. Bouchelta C, Medjram MS, Bertrand O, Bellat JP (2008) Preparation and characterization of activated carbon from date stones by physical activation with steam. J Anal Appl Pyrolysis 82:70–77. https://doi.org/10.1016/J.JAAP.2007.12.009

    Article  CAS  Google Scholar 

  21. El Messaoudi N, El Khomri M, Bentahar S, Dbik A, Lacherai A, Bakiz B (2016) Evaluation of performance of chemically treated date stones: application for the removal of cationic dyes from aqueous solutions. J Taiwan Inst Chem Eng 67:244–253. https://doi.org/10.1016/J.JTICE.2016.07.024

    Article  Google Scholar 

  22. Aldakhil F, Sirry SM, Al-Rifai A, Alothman ZA, Ali I (2018) Lignocellulosic date stone for uranium (VI) uptake: surface acidity, uptake capacity, kinetic and equilibrium. J Mol Liq 269:775–782. https://doi.org/10.1016/j.molliq.2018.08.097

    Article  CAS  Google Scholar 

  23. El Messaoudi N, El Khomri M, Chegini ZG, Dbik A, Bentahar S, Iqbal M, Jada A, Lacherai A (2021) Desorption of crystal violet from alkali-treated agricultural material waste: an experimental study, kinetic, equilibrium and thermodynamic modeling. Pigment Resin Technol. https://doi.org/10.1108/PRT-02-2021-0019/FULL/HTML

    Article  Google Scholar 

  24. He C, Yang Z, Ding J, Chen Y, Tong X, Li Y (2017) Effective removal of Cr(VI) from aqueous solution by 3-aminopropyltriethoxysilane-functionalized graphene oxide. Colloids Surf A Physicochem Eng Asp 520:448–458. https://doi.org/10.1016/J.COLSURFA.2017.01.086

    Article  CAS  Google Scholar 

  25. Lima VVC, Dalla Nora FB, Peres EC, Reis GS, Lima ÉC, Oliveira MLS, Dotto GL (2019) Synthesis and characterization of biopolymers functionalized with APTES (3–aminopropyltriethoxysilane) for the adsorption of sunset yellow dye. J Environ Chem Eng 7:103410. https://doi.org/10.1016/J.JECE.2019.103410

    Article  CAS  Google Scholar 

  26. Majoul N, Aouida S, Bessaïs B (2015) Progress of porous silicon APTES-functionalization by FTIR investigations. Appl Surf Sci 331:388–391. https://doi.org/10.1016/J.APSUSC.2015.01.107

    Article  CAS  Google Scholar 

  27. Bazzaz F, Binaeian E, Heydarinasab A, Ghadi A (2018) Adsorption of BSA onto hexagonal mesoporous silicate loaded by APTES and tannin: Isotherm, thermodynamic and kinetic studies. Adv Powder Technol 29:1664–1675. https://doi.org/10.1016/J.APT.2018.04.001

    Article  CAS  Google Scholar 

  28. Zhong L, Peng X, Yang D, Sun R (2012) Adsorption of heavy metals by a porous bioadsorbent from lignocellulosic biomass reconstructed in an ionic liquid. J Agric Food Chem 60:5621–5628. https://doi.org/10.1021/JF301182X

    Article  CAS  PubMed  Google Scholar 

  29. Nematidil N, Sadeghi M, Nezami S, Sadeghi H (2019) Synthesis and characterization of Schiff-base based chitosan-g-glutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions. Carbohydr Polym 222:114971. https://doi.org/10.1016/J.CARBPOL.2019.114971

    Article  CAS  PubMed  Google Scholar 

  30. El Messaoudi N, El Khomri M, Chegini ZG, Bouich A, Dbik A, Bentahar S, Labjar N, Iqbal M, Jada A, Lacherai A (2022) Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe2O4 nanoparticles. Nanotechnol Environ Eng. https://doi.org/10.1007/S41204-021-00173-6

    Article  Google Scholar 

  31. Danish M, Hashim R, Ibrahim MNM, Sulaiman O (2014) Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass Bioenerg 61:167–178. https://doi.org/10.1016/J.BIOMBIOE.2013.12.008

    Article  CAS  Google Scholar 

  32. Wakkel M, Khiari B, Zagrouba F (2018) Basic red 2 and methyl violet adsorption by date pits: adsorbent characterization, optimization by RSM and CCD, equilibrium and kinetic studies. Environ Sci Pollut Res 2619(26):18942–18960. https://doi.org/10.1007/S11356-018-2192-Y

    Article  Google Scholar 

  33. Aouzal Z, Bouabdallaoui M, El Guerraf A, Ben Jadi S, Wang R, Bazzaoui M, Bazzaoui EA (2020) Improvement of the anticorrosion resistance of nickel by polypyrrole coating electrosynthesized in salicylate medium. Mater Today Proc 31:S89–S95. https://doi.org/10.1016/j.matpr.2020.06.237

    Article  CAS  Google Scholar 

  34. Marchessault RH, Liang CY (1960) Infrared spectra of crystalline polysaccharides. III. Mercerized cellulose. J Polym Sci 43:71–84. https://doi.org/10.1002/pol.1960.1204314107

    Article  CAS  Google Scholar 

  35. El Messaoudi N, El Khomri M, Fernine Y, Bouich A, Lacherai A, Jada A, Sher F, Lima EC (2022) Hydrothermally engineered Eriobotrya japonica leaves/MgO nanocomposites with potential applications in wastewater treatment. Groundw Sustain Dev. https://doi.org/10.1016/J.GSD.2022.100728

    Article  Google Scholar 

  36. Saif B, Wang C, Chuan D, Shuang S (2015) Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug. J Biomater Nanobiotechnol 06:267–275. https://doi.org/10.4236/JBNB.2015.649025

    Article  CAS  Google Scholar 

  37. El Messaoudi N, El Khomri M, Ablouh EH, Bouich A, Lacherai A, Jada A, Lima EC, Sher F (2022) Biosynthesis of SiO2 nanoparticles using extract of Nerium oleander leaves for the removal of tetracycline antibiotic. Chemosphere. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132453

    Article  PubMed  Google Scholar 

  38. El Messaoudi N, El Khomri M, Chlif N, Chegini ZG, Dbik A, Bentahar S, Lacherai A (2021) Desorption of Congo red from dye-loaded Phoenix dactylifera date stones and Ziziphus lotus jujube shells. Groundw Sustain Dev 12:100552. https://doi.org/10.1016/j.gsd.2021.100552

    Article  Google Scholar 

  39. Benhamou A, Baudu M, Derriche Z, Basly JP (2009) Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48. J Hazard Mater 171:1001–1008. https://doi.org/10.1016/j.jhazmat.2009.06.106

    Article  CAS  PubMed  Google Scholar 

  40. Heidari A, Younesi H, Mehraban Z (2009) Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem Eng J 153:70–79. https://doi.org/10.1016/j.cej.2009.06.016

    Article  CAS  Google Scholar 

  41. El Messaoudi N, El Khomri M, Dabagh A, Chegini ZG, Dbik A, Bentahar S, Lacherai A, Iqbal M, Jada A, Sher F, Lima ÉC (2021) Synthesis of a novel nanocomposite based on date stones/CuFe 2 O 4 nanoparticles for eliminating cationic and anionic dyes from aqueous solution. Int J Environ Stud. https://doi.org/10.1080/00207233.2021.1929469

    Article  Google Scholar 

  42. Bazzaz F, Binaeian E, Heydarinasab A, Ghadi A (2018) Adsorption of BSA onto hexagonal mesoporous silicate loaded by APTES and tannin: Isotherm, thermodynamic and kinetic studies. Adv Powder Technol 29:1664–1675. https://doi.org/10.1016/J.APT.2018.04.001

    Article  CAS  Google Scholar 

  43. Liu Y, Cao Q, Luo F, Chen J (2009) Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Mater 163:931–938. https://doi.org/10.1016/j.jhazmat.2008.07.046

    Article  CAS  PubMed  Google Scholar 

  44. Rouhi M, Lakouraj MM, Tashakkorian H, Hasantabar V (2019) Novel carbon based bioactive nanocomposites of aniline/indole copolymer for removal of cationic dyes from aqueous solution: Kinetics and isotherms. New J Chem 43:2400–2410. https://doi.org/10.1039/C8NJ02924E

    Article  CAS  Google Scholar 

  45. Jarrah A, Farhadi S (2020) Preparation and characterization of novel polyoxometalate/CoFe2O4/metal-organic framework magnetic core-shell nanocomposites for the rapid removal of organic dyes from water. RSC Adv 10:39881–39893. https://doi.org/10.1039/D0RA04603E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taamneh Y, Sharadqah S (2016) The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl Water Sci 7:2021–2028. https://doi.org/10.1007/S13201-016-0382-7

    Article  Google Scholar 

  47. Engineering SY-ECU (2017) Kinetic and isotherm analysis of Cu (II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng 24:87–106. https://doi.org/10.1515/eces-2017-0007

  48. Nejadshafiee V, Islami MR (2019) Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater Sci Eng C 101:42–52. https://doi.org/10.1016/J.MSEC.2019.03.081

    Article  CAS  Google Scholar 

  49. Njikam E, Schiewer S (2012) Optimization and kinetic modeling of cadmium desorption from citrus peels: a process for biosorbent regeneration. J Hazard Mater 213–214:242–248. https://doi.org/10.1016/J.JHAZMAT.2012.01.084

    Article  PubMed  Google Scholar 

  50. Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  51. Simonin JP (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. https://doi.org/10.1016/J.CEJ.2016.04.079

    Article  CAS  Google Scholar 

  52. Chen T, Zhou Z, Xu S, Wang H, Lu W (2015) Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour Technol 190:388–394. https://doi.org/10.1016/J.BIORTECH.2015.04.115

    Article  CAS  PubMed  Google Scholar 

  53. Rosales E, Pazos M, Sanromán M, Desalination TT (2012) U (2012) Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: chromium and Azure B. Elsevier 284:150–156. https://doi.org/10.1016/j.desal.2011.08.049

    Article  CAS  Google Scholar 

  54. Wang S, Wei J, Lv S, Guo Z, Jiang F (2013) Removal of organic dyes in environmental water onto magnetic-sulfonic graphene nanocomposite. Clean: Soil, Air, Water 41:992–1001. https://doi.org/10.1002/CLEN.201200460

    Article  CAS  Google Scholar 

  55. Ahmad R, Mirza A (2018) Adsorptive removal of heavy metals and anionic dye from aqueous solution using novel Xanthan gum-Glutathione/Zeolite bionanocomposite. Groundw Sustain Dev 7:305–312. https://doi.org/10.1016/j.gsd.2018.07.002

    Article  Google Scholar 

  56. Freundlich H (1907) Über die Adsorption in Lösungen. Zeitschr Phys Chem 57U:385–470. https://doi.org/10.1515/ZPCH-1907-5723

    Article  Google Scholar 

  57. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/JA02242A004

    Article  CAS  Google Scholar 

  58. Treatment NA-A-DW (2021) Bio-adsorption of phenol from wastewater applying local Jordanian Eucalyptus leaves: parametric, kinetics, adsorption isotherms, and surface analysis. Desalin Water Treat 223:180–187. https://doi.org/10.5004/dwt.2021.27126

  59. He Y, Zhang L, An X, Wan G, Zhu W (2019) Total YL-S of the undefined Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: adsorption isotherms, kinetics, thermodynamics and mechanism. Elsevier, Berlin

  60. Wu Y, Luo H, Wang H, Wang C, Zhang J, Zhang Z (2013) Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide. J Colloid Interface Sci 394:183–191. https://doi.org/10.1016/J.JCIS.2012.11.049

    Article  CAS  PubMed  Google Scholar 

  61. Haounati R, Ouachtak H, El Haouti R, Akhouairi S, Largo F, Akbal F, Benlhachemi A, Jada A, Addi AA (2021) Elaboration and properties of a new SDS/CTAB@Montmorillonite organoclay composite as a superb adsorbent for the removal of malachite green from aqueous solutions. Sep Purif Technol 255:117335. https://doi.org/10.1016/j.seppur.2020.117335

    Article  CAS  Google Scholar 

  62. Nyairo WN, Eker YR, Kowenje C, Zor E, Bingol H, Tor A, Ongeri DM (2017) Efficient removal of lead(II) ions from aqueous solutions using methyl-β-cyclodextrin modified graphene oxide. Water Air Soil Pollut 228:406. https://doi.org/10.1007/s11270-017-3589-9

    Article  CAS  Google Scholar 

  63. Hu X, Yan L, Wang Y, Xu M (2020) Freeze-thaw as a route to build manageable polysaccharide cryogel for deep cleaning of crystal violet. Chem Eng J. https://doi.org/10.1016/J.CEJ.2020.125354

    Article  PubMed  PubMed Central  Google Scholar 

  64. Azmi SNH, Al-Balushi M, Al-Siyabi F, Al-Hinai N, Khurshid S (2020) Adsorptive removal of Pb(II) ions from groundwater samples in Oman using carbonized Phoenix dactylifera seed (Date stone). J King Saud Univ Sci 32:2931–2938. https://doi.org/10.1016/J.JKSUS.2020.07.015

    Article  Google Scholar 

  65. Mouni L, Merabet D, Bouzaza A, Belkhiri L (2010) Removal of Pb2+ and Zn2+ from the aqueous solutions by activated carbon prepared from Dates stone. Desalin Water Treat 16:66–73. https://doi.org/10.5004/DWT.2010.1106

    Article  CAS  Google Scholar 

  66. Es-Sahbany H, Hsissou R, El Hachimi ML, Allaoui M, Nkhili S, Elyoubi MS (2021) Investigation of the adsorption of heavy metals (Cu Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Mater Today Proc 45:7290–7298. https://doi.org/10.1016/J.MATPR.2020.12.1100

    Article  CAS  Google Scholar 

  67. Esmaeili A, Eslami H (2019) Efficient removal of Pb(II) and Zn(II) ions from aqueous solutions by adsorption onto a native natural bentonite. MethodsX 6:1979–1985. https://doi.org/10.1016/J.MEX.2019.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  68. Qin L, Yan L, Chen J, Liu T, Yu H, Du B (2016) Enhanced removal of Pb2+, Cu2+, and Cd2+ by amino-functionalized magnetite/kaolin clay. Ind Eng Chem Res 55:7344–7354. https://doi.org/10.1021/ACS.IECR.6B00657

    Article  CAS  Google Scholar 

  69. Ravikumar K, Udayakumar J (2020) Preparation and characterisation of green clay-polymer nanocomposite for heavy metals removal. Chem Ecol 36:270–291. https://doi.org/10.1080/02757540.2020.1723559

    Article  CAS  Google Scholar 

  70. Kaya A, Ören AH (2005) Adsorption of zinc from aqueous solutions to bentonite. J Hazard Mater 125:183–189. https://doi.org/10.1016/J.JHAZMAT.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  71. Bhattacharyya KG, Sen Gupta S (2006) Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clays. Colloids Surf A Physicochem Eng Asp 277:191–200. https://doi.org/10.1016/J.COLSURFA.2005.11.060

    Article  CAS  Google Scholar 

  72. Lin SH, Juang RS (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 92:315–326. https://doi.org/10.1016/S0304-3894(02)00026-2

    Article  CAS  PubMed  Google Scholar 

  73. Ulmanu M, Marañón E, Fernández Y, Castrillón L, Anger I, Dumitriu D (2003) Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water Air Soil Pollut 142:357–373. https://doi.org/10.1023/A:1022084721990

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz El Mouden.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Mouden, A., El Guerraf, A., El Messaoudi, N. et al. Date Stone Functionalized with 3-Aminopropyltriethoxysilane as a Potential Biosorbent for Heavy Metal Ions Removal from Aqueous Solution. Chemistry Africa 5, 745–759 (2022). https://doi.org/10.1007/s42250-022-00350-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00350-3

Keywords

Navigation