Skip to main content

Heavy Metal Contamination: An Alarming Threat to Environment and Human Health

  • Chapter
  • First Online:
Environmental Biotechnology: For Sustainable Future

Abstract

Metals naturally exist in the crust of the earth, and their compositions vary among different localities, resulting in structural disparity of surrounding concentrations. Some heavy metals are much important in trace amounts in respect to living organisms related to their metabolic activities. High solubility of various heavy metals changes them into extremely toxic and perilous contaminant of water and soil when discharged by many industrial activities. When these metals are released into the environment, they can be leached into the underground waters, depositing in the aquifers, or run off into surface waters and soils thereby resulting in water and soil pollution. Thus, heavy metals become a potential contaminant for environment that can partake in trophic transfer in food chains. The toxicity of heavy metals mainly depends upon its relative oxidation state, which is responsible for physiological bio-toxic effects. When these metals enter into the living organisms, they, combine with proteins, enzymes, and DNA molecules, form highly stable bio-toxic compounds, thus altering their proper functioning and obstructing them from the bioreactions. Arsenic, chromium, cadmium, and lead are highly toxic and produce mutagenic, carcinogenic, and genotoxic effects. Hence, this chapter is focused on occurrence and allocation of heavy metals, their toxicological impact on environment, and their possible eco-friendly remedies for green and healthy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamis, P. D. B., Panek, A. D., Leite, S. G. F., & Eleuthero, E. C. A. (2003). Factors involved with cadmium absorption by a wild-type strain of Saccharomyces cerevisiae. Brazilian Journal of Microbiology, 34(1), 55–60.

    Article  CAS  Google Scholar 

  • Alloway, B. J., & Jackson, A. P. (1991). The behaviour of heavy metals in sewage sludge amended soils. Science of the Total Environment, 100, 151–176.

    Article  CAS  Google Scholar 

  • Andrews, S., & Sutherland, R. A. (2004). Cu, Pb and Zn contamination in Nuuanu watershed, Oahu, Hawaii. Science of the Total Environment, 324, 173–182.

    Article  CAS  Google Scholar 

  • Arao, T., Ishikawa, S., Murakam, I. M., Abe, K., Maejima, Y., & Makino, T. (2010). Heavy metal contamination of agricultural soil and counter, measures in Japan. Paddy and Water Environment, 8(3), 247–257.

    Article  Google Scholar 

  • Asha, L. P., & Sandeep, R. S. (2013). Review on bioremediation – Potential tool for removing environmental pollution. International Journal of Basic and Applied Chemical Sciences, 3, 2277–2073.

    Google Scholar 

  • Atlas, R. M., & Bartha, R. (1993). Microbial ecology, fundamentals and applications (Vol. 410, pp. 237–238). Hamilton: The Benjamin/Cummings.

    Google Scholar 

  • ATSDR. (1999). Agency for toxic substances and disease registry. Public Health Service Atlanta: U.S. Department of Health and Human Services; Toxicological Profile for Lead.

    Google Scholar 

  • ATSDR. (2000). Agency for toxic substances and disease registry toxicological profile for Arsenic TP-92/09. Atlanta: Center for Disease Control.

    Google Scholar 

  • ATSDR. (2008). Agency for toxic substances and disease registry. Atlanta: U.S. Department of Health and Human Services, Public Health Service. Toxicological profile for chromium.

    Google Scholar 

  • Bade, R., Oh, S., Shin, W. S., & Hwang, I. (2013). Human health risk assessment of soils contaminated with metal (loid)s by using DGT uptake: A case study of a former Korean metal refinery site. Human and Ecological Risk Assessment, 19, 767–777.

    Article  CAS  Google Scholar 

  • Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4, 361–377.

    Article  CAS  Google Scholar 

  • Baselt, R. C. (2000). Disposition of toxic drugs and chemicals in man (5th ed.). Foster City: Chemical Toxicology Institute.

    Google Scholar 

  • Bharagava, R. N., & Mishra, S. (2018). Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment industries. Ecotoxicology and Environmental Safety, 147, 102–109.

    Article  CAS  Google Scholar 

  • Bharagava, R. N., Chowdhary, P., & Saxena, G. (2017). Bioremediation: An eco-sustainable green technology, its application and limitations. In Environmental pollutants and their bioremediation approaches. Boca Raton: CRC press.

    Google Scholar 

  • Blaylock, M. J., & Huang, J. W. (2000). Phytoextraction of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 53–70). New York: Wiley.

    Google Scholar 

  • Bodek, I., Lyman, W. J., & Reehl, W. F. (1988). Environmental inorganic chemistry: Properties, processes and estimation methods. Elmsford: Pergamon Press.

    Google Scholar 

  • Campbell, P. G. C. (2006). Cadmium – A priority pollutant. Environment and Chemistry, 3(6), 387–388.

    Article  CAS  Google Scholar 

  • Castagnetto, J. M., Hennessy, S. W., Roberts, V. A., Elizabeth, D. G., Tainer, J. A., & Pique, M. E. (2002). MDB: The metalloprotein database and browser at the Scripps Research Institute. Nucleic Acids Research, 30(1), 379–382.

    Article  CAS  Google Scholar 

  • Cempel, M., & Nikel, G. (2006). Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15(3), 375–382.

    CAS  Google Scholar 

  • Centeno, J. A., Tchounwou, P. B., & Patlolla, A. K. (2005). Environmental pathology and health effects of arsenic poisoning: A critical review. In R. Naidu, E. Smith, J. Smith, & P. Bhattacharya (Eds.), Managing arsenic in the environment: From soil to human health. Adelaide: Australia CSIRO Publishing Corp.

    Google Scholar 

  • Cervantes, C., & Campos-Gracia, J. (2007). Reduction and efflux of chromate by bacteria. In D. H. Nies & S. Silver (Eds.), Molecular microbiology of heavy metals (pp. 407–420). Berlin: Springer.

    Chapter  Google Scholar 

  • Chandra, R., Bharagava, R. N., Kapley, A., & Purohit, H. J. (2011). Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresource Technology, 102, 2333–2341.

    Article  CAS  Google Scholar 

  • Chao, S., LiQin, J., & WenJun, Z. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24–38.

    Google Scholar 

  • Chen, H. M. (2002). Behaviours and environmental quality of chemical substances in the soil. Beijing: Science Press.

    Google Scholar 

  • Chen, Y. F. (2011). Review of the research on heavy metal contamination of China’s city soil and its treatment method. China Population, Resources and Environment, 21(3), 536–539.

    Google Scholar 

  • Chen, C. Y., & Lin, T. H. (1998). Nickel toxicity to human term placenta: In vitro study on lipid per oxidation. Journal of Toxicology & Environmental Health Part A: Current Issues, 54, 37–47.

    Article  CAS  Google Scholar 

  • Cheung, K. H., & Gu, J. D. (2007). Mechanism of hexavalent chromium detoxification by microorganism and bioremediation application potential: A review. International Biodeterioration and Biodegradation, 59(1), 8–15.

    Article  CAS  Google Scholar 

  • Coral, M. N. U., Korkmaz, H., & Arikan, B. (2005). Plasmid mediated heavy metal resistance in Enterobacter spp. isolated from Sofulu landfill, in Adana, Turkey. Annales de Microbiologie, 55(3), 175–179.

    Google Scholar 

  • Costa, M., & Klein, C. B. (1999). Nickel carcinogenesis, mutation, epigenetics or selection. Environmental Health Perspectives, Part A, 107, 438–439.

    Article  Google Scholar 

  • Deeb, B. E., & Altalhi, A. D. (2009). Degradative plasmid and heavy metal resistance plasmid naturally co-exist in phenol and cyanide assimilating bacteria. American Journal of Biochemistry and Biotechnology, 5(2), 84–93.

    Article  Google Scholar 

  • Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. Journal of Hazardous Materials, 15, 250–251.

    Google Scholar 

  • Diaz, R. M., Diaz-Perez, & Vergas, E. (2008). Mechanism of bacterial resistance to chromium compounds. Biometals, 21, 321–332.

    Article  CAS  Google Scholar 

  • Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, B. U., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189–2212.

    Article  CAS  Google Scholar 

  • Dong, X., Li, C., Li, J., Wang, J., Liu, S., & Ye, B. (2010). A novel approach for soil contamination assessment from heavy metal pollution: A linkage between discharge and adsorption. Journal of Hazardous Materials, 175, 1022–1030.

    Article  CAS  Google Scholar 

  • Falahiardakani, A. (1984). Contamination of environment with heavy metals emitted from automotives. Ecotoxicology and Environmental Safety, 8, 152–161.

    Article  CAS  Google Scholar 

  • Flora, S. J. S., Saxena, G., Gautam, P., Kaur, P., & Gill, K. D. (2007). Lead induced oxidative stress and alterations in biogenic amines in different rat brain regions and their response to combined administration of DMSA and MiADMSA. Chemico-Biological Interactions, 170, 209–220.

    Article  CAS  Google Scholar 

  • Fontes, R. L. S., & Cox, F. R. (1998). Zinc toxicity in soybean grown at high iron concentration in nutrient solution. Journal of Plant Nutrition, 21, 1723–1730.

    Article  CAS  Google Scholar 

  • Frey, B., Keller, C., & Zierold, K. (2000). Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 23(7), 675–687.

    Article  CAS  Google Scholar 

  • Fulekar, M. H. (2010). Bioremediation technology: Recent advances. Dordrecht: Springer.

    Book  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review of phytoremediation of heavy metal and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1–8.

    Article  Google Scholar 

  • Giaginis, C., Gatzidou, E., & Theocharis, S. (2006). DNA repair systems as targets of cadmium toxicity. Toxicology and Applied Pharmacology, 213, 282–290.

    Article  CAS  Google Scholar 

  • Guo, J., Dai, X., & Xu W Ma, M. (2008). Over expressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 72, 1020–1026.

    Article  CAS  Google Scholar 

  • Gupta, M. K., Kumari, K., Srivastava, A., & Shikha, G. (2014). Bioremediation of heavy metal polluted environment using resistant bacteria. Journal of Environmental Research and Development, 8(4), 883–889.

    Google Scholar 

  • Henry, J. R. (2000). An overview of phytoremediation of lead and mercury – NNEMS report, pp. 3–9. Washington, DC.

    Google Scholar 

  • IARC. (1990). International Agency for Research on Cancer, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: IARC Scientific Publications, IARC; Chromium, nickel and welding. Lyon, France, p. 49.

    Google Scholar 

  • Irfan, M., Hayat, S., Ahmad, A., & Alyemeni, M. N. (2013). Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20(1), 1–10.

    Article  CAS  Google Scholar 

  • Jain, A. N., Udayashankara, T. H., & Lokesh, K. S. (2014). Review on bioremediation of heavy metals with microbial isolates and amendments on soil residue. International Journal of Science and Research, 3(8), 2319–7064.

    Google Scholar 

  • Katz, S. A., & Salem, H. (1993). The toxicology of chromium with respect to its chemical speciation: A review. Journal of Applied Toxicology, 13, 217–224.

    Article  CAS  Google Scholar 

  • Khan, M. N., Wasim, A. A., Sarwar, A., & Rasheed, M. F. (2011). Assessment of heavy metal toxicants in the roadside soil along the N-5, National Highway, Pakistan. Environmental Monitoring and Assessment, 182, 587–595.

    Article  CAS  Google Scholar 

  • Khodadoust, A. P., Reddy, K. R., & Maturi, K. (2004). Removal of nickel and phenanthrene from kaolin soil using different extractants. Environmental Engineering Science, 21(6), 691–704.

    Article  CAS  Google Scholar 

  • Kidd, P. S., & Monterroso, C. (2005). Metal extraction by Alyssum serpyllifolium ssp.lusitanicum on mine-spoil soils from Spain. Science of the Total Environment, 336(1–3), 1–11.

    Article  CAS  Google Scholar 

  • Kirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., & Jacquet, T. (2006). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modelling. Geochimica et Cosmochimica Acta, 70(9), 2163–2190.

    Article  CAS  Google Scholar 

  • Kumar, M., & Singh, H. (2017). Phytoremediation: A green technology for remediation metal contaminated site. In Environmental pollutants and their bioremediation approaches (pp. 297–328). Boca Raton: CRC press.

    Google Scholar 

  • Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T. (2011). Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences, 1(6), 1079–1093.

    Google Scholar 

  • Lal, S., Singh, R., & Kumar, R. (2013). Heavy metal concentration and bacterial load on Spinach (Spinacia oleracea L.) phyllosphere under different regions in Lucknow, Uttar Pradesh. International Journal of Pharmacy & Life Sciences, 4(7), 1–7.

    Google Scholar 

  • Lash, L. H., Putt, D. A., Hueni, S. E., Payton, S. G., & Zwickl, J. (2007). Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules (Effects of apoptosis, necrosis, and glutathione status). Toxicology and Applied Pharmacology, 221(3), 349–362.

    Article  CAS  Google Scholar 

  • Lenntech Water Treatment and Air Purification. (2004). Water treatment Lenntech, Rotterdamseweg, Netherlands. http://www.excelwater.com/thp/filters/Water-Purification.htm

  • Ling, W., Shen, Q., Gao, Y., Gu, X., & Yang, Z. (2007). Use of bentonite to control the release of copper from contaminated soils. Australian Journal of Soil Research, 45(8), 618–623.

    Article  CAS  Google Scholar 

  • Lloyd, J. R., & Lovley, D. R. (2001). Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnology, 12, 248–253.

    Article  CAS  Google Scholar 

  • Long, X. X., Yang, X. E., & Ni, W. Z. (2002). Current status and prospective on phytoremediation of heavy metal polluted soils. Journal of Applied Ecology, 13, 757–756.

    CAS  Google Scholar 

  • Luo, X. S., Ding, J., Xu, B., Wang, Y. J., Li, H. B., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88–96.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Komar, K. M., & Tu, C. (2001). Bioremediation: A fern that hyperaccumulates arsenic. Nature, 409, 579.

    Article  CAS  Google Scholar 

  • Mani, S., & Bharagava, R. N. (2016). Exposure to Crystal Violet, its toxic, genotoxic and carcinogenic effects on environmental and its degradation and detoxification for environmental safety. Reviews of Environmental Contamination and Toxicology, 237, 71–104.

    CAS  Google Scholar 

  • Maslin, P., & Maier, R. M. (2000). Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils. Bioremediation Journal, 4(4), 295–308.

    Article  CAS  Google Scholar 

  • Matsumoto, S. T., Mantovani, M. S., Malaguttii, M. I. A., Dias, A. L., Fonseca, I. C., & Marin-Morales, M. A. (2006). Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genetics and Molecular Biology, 29(1), 148–158.

    Article  CAS  Google Scholar 

  • Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47, 51–54.

    Article  CAS  Google Scholar 

  • Mishra, S., & Bharagava, R. N. (2016). Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. Journal of Environmental Science and Health, Part C. https://doi.org/10.1080/10590501.2015.1096883.

    Article  CAS  Google Scholar 

  • Monterroso, P., Pato, P., & Pereira, E. (2003). Distribution and accumulation of metals (Cu, Cd, Zn and Pb) in sediments of a lagoon on the North-western coast of Portugal. Marine Pollution Bulletin, 46, 1200–1205.

    Article  CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216.

    Article  CAS  Google Scholar 

  • Najeeb, U., Ahmad, W., Zia, M. H., Malik, Z., & Zhou, W. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2014.01.009.

    Article  CAS  Google Scholar 

  • Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.

    Article  CAS  Google Scholar 

  • NRC. (2001). National Research Council. Arsenic in drinking water. On line at: http://www.nap.edu/books/0309076293/html/

  • NSC. (2009). Lead poisoning. National Safety council, 2009. http:// www.nsc.org/news resources/Resources/Documents/Lead Poisoning.pdf

  • Paschal, D. C., Burt, V., Caudill, S. P., Gunter, E. W., Pirkle, J. L., Sampson, E. J., Miller, D. T., & Jackson, R. J. (2000). Exposure of the U.S. population aged 6 years and older to cadmium: 1988–1994. Archives of Environmental Contamination and Toxicology, 38, 377–383.

    Article  CAS  Google Scholar 

  • Patra, R. C., Malik, B., Beer, M., Megharaj, M., & Naidu, N. (2010). Molecular characterization of chromium (VI) reducing potential in gram positive bacteria isolated from contaminated sites. Soil Biology and Biochemistry, 42, 1857–1863.

    Article  CAS  Google Scholar 

  • Patrick, L. (2002). Mercury toxicity and antioxidants: Part 1: Role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Alternative Medicine Review, 7(6), 456–471.

    Google Scholar 

  • Peralta, J. R., Gardea-Torresdey, J. L., & Tiemann, K. J. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and Toxicology, 66(6), 727–734.

    CAS  Google Scholar 

  • Prajapati, S. K., & Meravi, N. (2014). Heavy metal speciation of soil and Calotropis procera from thermal power plant area. Proceedings of the International Academy of Ecology and Environmental Sciences, 4(2), 68–71.

    Google Scholar 

  • Prasad, M. N. V., & Freitas, H. M. D. (2003). Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 93(1), 285–321.

    Google Scholar 

  • Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41, 935–944.

    CAS  Google Scholar 

  • Raju, K. V., Somashekar, R. K., & Prakash, K. L. (2013). Spatio-temporal variation of heavy metals in Cauvery River basin. Proceedings of the International Academy of Ecology and Environmental Sciences, 3(1), 59–75.

    Google Scholar 

  • Reddy, A. M., Kumar, S. G., Jyotsnakumari, G., et al. (2005). Lead induced changes in antioxidant metabolism of horse gram (Macrotyloma uniflorum (Lam.) Verdc.) and bengal gram (Cicer arietinum L.). Chemosphere, 60, 97–104.

    Article  CAS  Google Scholar 

  • Reeves, R. D., & Baker, A. J. M. (2000). Metal accumulating plants. In I. Raskin & B. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 193–229). New York: Wiley.

    Google Scholar 

  • Sadowsky, M. J. (1999). Phytoremediation: Past promises and future practices. In: Proceedings of the 8th international symposium on microbial ecology. Halifax, Canada, pp. 1–7.

    Google Scholar 

  • Scragg, A. (2006). Environmental biotechnology (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Seaward, M. R. D., & Richardson, D. H. S. (1990). Atmospheric sources of metal pollution and effects on vegetation. In A. J. Shaw (Ed.), Heavy metal tolerance in plants evolutionary aspects (pp. 75–94). Boca Raton: CRC Press.

    Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35–52.

    Article  CAS  Google Scholar 

  • Shuttleworth, K. L., & Unz, R. F. (1993). Growth of Filamentous bacteria in the presence of heavy metals. In D. Jenkins & B. H. Olson (Eds.), Water and wastewater microbiology (pp. 485–487). Oxford: Pergamon.

    Google Scholar 

  • Singh, N., Kumar, D., & Sahu, A. (2007). Arsenic in the environment: Effects on human health and possible prevention. Journal of Environmental Biology, 28(2), 359–365.

    CAS  Google Scholar 

  • Sinha, S. K., Srinivastava, H. S., & Mishra, S. N. (1988). Effect of lead on nitrate reductase activity and nitrate assimilation in pea leaves. Acta Societatis Botanicorum Poloniae, 57, 457–463.

    Article  CAS  Google Scholar 

  • Smith, L. A., Means, J. L., & Chen, A. (1995). Remedial options for metals-contaminated sites. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Somasekharaiah, B. V., Padmaja, K., & Prasad, A. R. K. (1992). Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxidase in chlorophyll degradation. Physiologia Plantarum, 85, 85–89.

    Article  Google Scholar 

  • Stern, B. R. (2010). Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. Toxicology and Environmental Health, 73(2), 114–127.

    Article  CAS  Google Scholar 

  • Tamara, H., Tom, R., Brett, F., Smith, B., & Oliver, J. (2006). Capsular polysaccharide phase variation in Vibrio vulnificus. Applied and Environmental Microbiology, 72(11), 6986–6993.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Patlolla, A. K., & Centeno, J. A. (2003). Carcinogenic and systemic health effects associated with arsenic exposure-a critical review. Toxicologic Pathology, 31(6), 575–588.

    CAS  Google Scholar 

  • Tchounwou, P. B., Centeno, J. A., & Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis and carcinogenesis – A health risk assessment and management approach. Molecular and Cellular Biochemistry, 255, 47–55.

    Article  CAS  Google Scholar 

  • Thiele, D. J. (1995). Metal detoxification in eukaryotic cells. Washington, DC: CRISP database of National Institute of Health.

    Google Scholar 

  • Turpeinen, R., Kairesalo, T., & Haggblom, M. M. (2004). Microbial community structure and activity in arsenic-, chromium- and copper contaminated soils. FEMS Microbiology Ecology, 47, 39–50.

    Article  CAS  Google Scholar 

  • USDHHS. (1999). Toxicological profile for lead. Atlanta: United States Department of Health and Human Services.

    Google Scholar 

  • Vargas-Garcia, M. C., Suarez-Estrella, F., Lopez, M. J., & Moreno, J. (2012). Bioremediation of heavy metals with microbial isolates. Universidad de Almeria, Crta. Sacramento s/n, La Canada de Urbano04008Almeria, Espana. https://doi.org/10.1016/j.scitotenv.2012.05.026.

    Article  CAS  Google Scholar 

  • Velma, V., Vutukuru, S. S., & Tchounwou, P. B. (2009). Ecotoxicology of hexavalent chromium in freshwater fish: A critical review. Reviews on Environmental Health, 24(2), 129–145.

    Article  CAS  Google Scholar 

  • Venkatesh, K. R., More, N., & Kanoujia, S. (2015). Chromium accumulation in Eisenia fetida in modified vermi compost supplemented with tannery sludge. Journal of Agroecology and Natural Resource Management, 1(4), 135–141.

    Google Scholar 

  • Verkleji, J. A. S. (1993). The effects of heavy metals stress on higher plants and their use as biomonitors. In B. Markert (Ed.), Plant as bioindicators: Indicators of heavy metals in the terrestrial environment (pp. 415–424). New York: VCH.

    Google Scholar 

  • Verma, A., Bharagava, R. N., Kumar, V., Singh, A., Dhusia, N., & More, N. K. (2016). Role of macrophytes in heavy metal removal through rhizo-filtration in aquatic system. European Journal of Biotechnology and Bioscience, 4(10), 15–20.

    Google Scholar 

  • Wang, Z., & Rossman, T. G. (1996). In L. W. Cheng (Ed.), The toxicology of metals (Vol. 1, pp. 221–243). Boca Raton: CRC Press.

    Google Scholar 

  • Wang, Q., Cui, Y., & Dong, Y. (2002). Phytoremediation of polluted waters potential and prospects of wetland plants. Acta Biotechnologica, 22(1–2), 199–208.

    Article  CAS  Google Scholar 

  • WHO. (1991). World Health Organization Environmental. Health Criteria 108 Nickel. WHO, Geneva.

    Google Scholar 

  • WHO. (2003). World Health Organization. Chromium in drinking-water. Background document for preparation of WHO guidelines for drinking-water quality. Geneva: World Health Organization (WHO/SDE/WSH/03.04/4).

    Google Scholar 

  • Wood, J. M. (1974). Biological cycles for toxic elements in the environment. Science, 183, 1049–1052.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network (ISRN) Ecology, 2011, 1–20.

    Google Scholar 

  • Xu, Q., & Shi, G. (2000). The toxic effects of single Cd and interaction of Cd with Zn on some physiological index of [Oenanthe javanica (Blume) DC]. Journal of Nanjing Normal University (Natural Science), 23(4), 97–100.

    CAS  Google Scholar 

  • Xu, X. R., Li, H. B., Gu, J. D., & Li, X. Y. (2005). Kinetics of the reduction of chromium (VI) by vitamin C. Environmental Toxicology and Chemistry, 24, 1310–1131.

    Article  CAS  Google Scholar 

  • Yadav, A., Raj, A., & Bharagava, R. N. (2016). Detection and characterization of a multi-drug and multi-metal resistant Enterobacterium Pantoea sp. from tannery wastewater after secondary treatment process. International Journal of Plant and Environment, 2(1–2), 37–42.

    Google Scholar 

  • Yadav, A., Chowdhary, P., Kaithwas, G., & Bharagava, R. N. (2017). Toxic metals in environment, threats on ecosystem and bioremediation approaches. In S. Das & Singh (Eds.), Handbook of metal-microbe interactions and bioremediation. Boca Raton: CRC Press/Taylor & Francis Group.

    Google Scholar 

  • Zaki, S., & Farag, S. (2010). Identification of bacterial strains from tannery effluent andreduction of hexavalent chromium. Journal of Environmental Biology, 31(5), 877–882.

    Google Scholar 

  • Zeid, I. M. (2001). Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biologia Plantarum, 44, 111–115.

    Article  CAS  Google Scholar 

  • Zhang, W. J., Jiang, F. B., & Ou, J. F. (2011). Global pesticide consumption and pollution: With China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125–144.

    CAS  Google Scholar 

  • Zhitkovich, A. (2005). Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium (VI). Chemical Research in Toxicology, 18(1), 3–11.

    Article  CAS  Google Scholar 

  • Ziemackei, G., Viviano, G., & Merli, F. (1989). Heavy metal source and environmental presence. Annali dell’Istituto Superiore di Sanità, 25(3), 531–536.

    Google Scholar 

Download references

Acknowledgment

The financial support received from “Science and Engineering Research Board” (SERB), Department of Science & Technology (DST), Government of India (GOI), New Delhi, India, as “Major Research Project” (Grant No.:EEQ/2017/000407) and University Grant Commission (UGC) Fellowship received for doctoral research work is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Naresh Bharagava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, S. et al. (2019). Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. In: Sobti, R., Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_5

Download citation

Publish with us

Policies and ethics