Skip to main content
Log in

Application of Unmodified Brachystegia spiciformis Leaf Biomass in the Adsorption of Nitrate Ions

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The application of Brachystegia spiciformis leaf powder in the adsorption of nitrate ions was conducted on both synthetic and real water samples. Optimum adsorption conditions for nitrate adsorption were pH of 4, equilibration time of 45 min, and biosorbent dose of 1.5 g. Batch adsorption was used in this study and nitrate ions were analyzed using the salicylic acid method. Non-linear adsorption isotherm fitting indicated that the experimental data was described well by the Langmuir model with a monolayer adsorption capacity of 5.97 mg/g. The Langmuir`s separation factor, \({R}_{L}\), values were in the range, 0 < \({R}_{L}\)  < 1, indicating favorable interactions between nitrate ions and Brachystegia spiciformis leaf powder adsorbent. The pseudo first order model provided the best fit to the experimental kinetics data with an R2 value of 0.9880 and a rate constant of \(\left( {7.3 \pm 0.1} \right) \times 10^{ - 2}\) min−1. The Brachystegia spiciformis leaf powder adsorbent achieved 100% and 78% nitrate ions removal from dam water and industrial effluent water respectively. We have shown that a cheap biomass adsorbent that has high activity towards nitrate ions adsorption can be produced and applied in the adsorption of nitrates from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brindha K, Renganayaki SP, Elango L (2017) Sources, toxicological effects and removal techniques of nitrates in groundwater: an overview. Indian J Environ Prot 37:667–700

    CAS  Google Scholar 

  2. Górski J, Dragon K, Kaczmarek PMJ (2019) Nitrate pollution in the Warta River (Poland) between 1958 and 2016: trends and causes. Environ Sci Pollut Res 26:2038–2046. https://doi.org/10.1007/s11356-017-9798-3

    Article  CAS  Google Scholar 

  3. Jung H, Kim YS, Yoo J, Park B, Lee J (2021) Seasonal variations in stable nitrate isotopes combined with stable water isotopes in a wastewater treatment plant: implications for nitrogen sources and transformation. J Hydrol 599:126488. https://doi.org/10.1016/j.jhydrol.2021.126488

    Article  CAS  Google Scholar 

  4. Alex R, Kitalika A, Mogusu E, Njau K (2021) Sources of Nitrate in Ground Water Aquifers of the Semiarid Region of Tanzania. Geofluids 2021:Article ID 6673013. https://doi.org/10.1155/2021/6673013.

  5. Nakagawa K, Amano H, Persson M, Berndtsson R (2021) Spatiotemporal variation of nitrate concentrations in soil and groundwater of an intensely polluted agricultural area. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-82188-2

    Article  CAS  Google Scholar 

  6. Namasivayam C, Sangeetha D (2005) Removal and recovery of nitrate from water by ZnCl2 activated carbon from coconut coir pith, an agricultural solid waste. Indian J Chem Technol 12:513–521

    CAS  Google Scholar 

  7. Parvizishad M, Dalvand A, Mahvi AH, Goodarzi F (2017) A review of adverse effects and benefits of nitrate and nitrite in drinking water and food on human health. Heal Scope 6:e14164. https://doi.org/10.5812/jhealthscope.14164

    Article  Google Scholar 

  8. Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ, Nolan BT, Villanueva CM, van Breda SG (2018) Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health 15:1–31. https://doi.org/10.3390/ijerph15071557

    Article  CAS  Google Scholar 

  9. Shyamala S, Manikandan NA, Pakshirajan K, Tang VT, Rene ER, Park H, Behera SK (2019) Phytoremediation of nitrate contaminated water using ornamental plants. J Water Supply Res Technol 68(8):731–743. https://doi.org/10.2166/aqua.2019.111

    Article  Google Scholar 

  10. Rezvani F, Sarrafzadeh MH, Ebrahimi S, Oh HM (2019) Nitrate removal from drinking water with a focus on biological methods: a review. Environ Sci Pollut Res 26:1124–1141. https://doi.org/10.1007/s11356-017-9185-0

    Article  CAS  Google Scholar 

  11. Malakootian M, Yousefi N, Fatehizadeh A (2011) Survey efficiency of electrocoagulation on nitrate removal from aqueous solution. Int J Environ Sci Technol 8:107–114. https://doi.org/10.1007/BF03326200

    Article  CAS  Google Scholar 

  12. Bensalah N, Nicola R, Abdel-Wahab A (2014) Nitrate removal from water using UV-M/S2O42- advanced reduction process. Int J Environ Sci Technol 11:1733–1742. https://doi.org/10.1007/s13762-013-0375-0

    Article  CAS  Google Scholar 

  13. Jaworski MA, Barbero BP, Siri GJ, Casella ML (2019) Removal of nitrate from drinking water by using PdCu structured catalysts based on cordierite monoliths. Brazilian J Chem Eng 36:705–715. https://doi.org/10.1590/0104-6632.20190362s20180292

    Article  CAS  Google Scholar 

  14. Dabagh A, Bagui A, Abali M, Aziam R, Chiban M, Sinan F, Zerbet M (2021) Increasing the Adsorption Efficiency of Methylene Blue by Acid Treatment of the Plant Carpobrotus edulis. Chem Africa 4:585–598

    Article  CAS  Google Scholar 

  15. Abegunde SM, Idowu KS, Adejuwon OM, Adeyemi-Adejolu T (2020) A review on the influence of chemical modification on the performance of adsorbents. Resour Environ Sustain 1:100001. https://doi.org/10.1016/j.resenv.2020.100001

    Article  Google Scholar 

  16. Ang BYH, Ong YH, Ng YS (2021) Investigation on the removal of nitrate from water using different types of biosorbents. IOP Conf Ser Earth Environ Sci 646. https://doi.org/10.1088/1755-1315/646/1/012010

  17. Fotsing PN, Woumfo ED, Mezghich S, Mignot M, Mofaddel N, Le Derf F, Vieillard J (2020) Surface modification of biomaterials based on cocoa shell with improved nitrate and Cr(VI) removal. RSC Adv 10:20009–20019. https://doi.org/10.1039/d0ra03027a

    Article  CAS  Google Scholar 

  18. Zhang M, Song G, Gelardi DL, Huang L, Khan E, Mašek O, Vieillard J (2020) Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res 186:116303. https://doi.org/10.1016/j.watres.2020.116303

    Article  CAS  PubMed  Google Scholar 

  19. Jendia AH, Hamzah S, Abuhabib AA, El-ashgar NM (2020) Removal of nitrate from groundwater by eggshell biowaste. Water Supply 20(7):2514–2529. https://doi.org/10.2166/ws.2020.151

    Article  CAS  Google Scholar 

  20. Berkessa WY, Mereta ST, Feyisa FF (2019) Simultaneous removal of nitrate and phosphate from wastewater using solid waste from factory. Appl Water Sci 9:1–10. https://doi.org/10.1007/s13201-019-0906-z

    Article  CAS  Google Scholar 

  21. Elangovan NS, Lavanya V, Arunthathi S (2015) Removal of chromium from ground water using neem leaves as adsorbent. Int J Environ Res 9:439–444

    CAS  Google Scholar 

  22. Ghosh K, Bar N, Biswas AB, Das SK (2019) Removal of methylene blue (aq) using untreated and acid-treated eucalyptus leaves and GA-ANN modelling. Can J Chem Eng 97:2883–2898. https://doi.org/10.1002/cjce.23503

    Article  CAS  Google Scholar 

  23. Ibrahim MB, Sani S (2015) Neem (Azadirachta indica) leaves for removal of organic pollutants. J Geosci Environ 3:1–9. https://doi.org/10.4236/gep.2015.32001

    Article  Google Scholar 

  24. Singh TP, Majumder CB (2018) Removal of fluoride using neem leaves batch reactor: kinetics and equilibrium studies. Asian J Pharm Clin Res 11:237–41. https://doi.org/10.22159/ajpcr.2018.v11i3.14080.

  25. Tsamo C, Paltahe A, Fotio D, Vincent TA, Sales WF (2019) One-, Two-, and Three-Parameter Isotherms, Kinetics, and Thermodynamic Evaluation of Co(II) Removal from Aqueous Solution Using Dead Neem Leaves. Int J Chem Eng Article ID 6452672. https://doi.org/10.1155/2019/6452672

  26. Monteiro MIC, Ferreira FN, De Oliveira NMM, Ávila AK (2003) Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Anal Chim Acta 477:125–129. https://doi.org/10.1016/S0003-2670(02)01395-8

    Article  CAS  Google Scholar 

  27. Ighalo JO, Adeniyi AG (2020) A mini-review of the morphological properties of biosorbents derived from plant leaves. SN Appl Sci 2:1–16. https://doi.org/10.1007/s42452-020-2335-x

    Article  CAS  Google Scholar 

  28. Gupta S, Sharma SK, Kumar A (2019) Biosorption of Ni (II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Sci Eng 12:27–36. https://doi.org/10.1016/j.wse.2019.04.003

    Article  CAS  Google Scholar 

  29. Medhi H, Chowdhury PR, Baruah PD, Bhattacharyya KG (2020) Kinetics of Aqueous Cu(II) Biosorption onto Thevetia peruviana Leaf Powder. ACS Omega 5:13489–13502. https://doi.org/10.1021/acsomega.9b04032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mosoarca G, Vancea C, Popa S, Gheju M, Boran S (2020) Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-74819-x

    Article  CAS  Google Scholar 

  31. Mahmood T, Saddique MT, Naeem A, Westerhoff P, Mustafa S, Alum A (2011) Comparison of different methods for the point of zero charge determination of NiO. Ind Eng Chem Res 50:10017–10023. https://doi.org/10.1021/ie200271d

    Article  CAS  Google Scholar 

  32. Khan TA, Chaudhry SA, Ali I (2014) Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. J Mol Liq 202:165–175. https://doi.org/10.1016/j.molliq.2014.12.021

    Article  CAS  Google Scholar 

  33. Bernal V, Giraldo L, Moreno-Piraján J (2018) Physicochemical properties of activated carbon: their effect on the adsorption of pharmaceutical compounds and adsorbate-adsorbent interactions. J Carbon Res 4:62. https://doi.org/10.3390/c4040062

    Article  CAS  Google Scholar 

  34. Gulipalli CHS, Prasad B, Wasewar KL (2011) Batch study, equilibrium and kinetics of adsorption of selenium using Rice Husk Ash (RHA). J Eng Sci Technol 6:586–605

    Google Scholar 

  35. Alghamdi AA, Al-Odayni AB, Saeed WS, Al-Kahtani A, Alharthi FA, Aouak T (2019) Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials (Basel) 12:1–6. https://doi.org/10.3390/ma12122020

    Article  CAS  Google Scholar 

  36. Nharingo T, Shoniwa V, Hunga O, Shumba M (2013) Exploring the biosorption of Methylene Blue dye onto acid treated sugarcane bagasse. Int J Curr Res 5:2169–2175

    Google Scholar 

  37. Rajamohan N (2009) Equilibrium studies on sorption of an anionic dye onto acid activated water hyacinth roots. African J Environ Sci Technol 3:399–404

    CAS  Google Scholar 

  38. Majoni S, Masaya TW (2020) Assessing the effects of precursor material’s carbon content on synthesized zeolites’ properties: applications in heavy metal adsorption. J Mater Environ Sci 2508:2034–2051

    Google Scholar 

  39. Sahin R, Tapadia K (2015) Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite. Water Sci Technol 72:2262–2269. https://doi.org/10.2166/wst.2015.449

    Article  CAS  PubMed  Google Scholar 

  40. Tsai S-C, Juang K-W (2000) Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite. J Radioanal Nucl Chem 243:741–746

    Article  CAS  Google Scholar 

  41. Ho Y, McKay GA (1998) Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76:332–340

    Article  CAS  Google Scholar 

  42. Ho YS, Wase DAJ, Forster CF (1996) Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol 17:71–77. https://doi.org/10.1080/09593331708616362

    Article  CAS  Google Scholar 

  43. Mhonde N, Schreithofer N, Corin K, Mäkelä M (2020) Assessing the combined effect of water temperature and complex water matrices on xanthate adsorption using multiple linear regression. Minerals 10:1–17

    Google Scholar 

  44. Wang S, Wang N, Yao K, Fan Y, Li W, Han W, Yin X, Chen D (2019) Characterization and interpretation of Cd (II) adsorption by different modified rice straws under contrasting conditions. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-54337-1

    Article  CAS  Google Scholar 

  45. Singh T, Singhal R (2013) Reuse of a Waste Adsorbent poly (AAc/AM/SH)-Cu Superabsorbent Hydrogel, for the Potential Phosphate ion Removal from Waste Water: Matrix Effects, Adsorption Kinetics, and Thermodynamic Studies. J Appl Polym Sci 2013. https://doi.org/10.1002/app.39018

Download references

Funding

This research did not receive any external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Majoni.

Ethics declarations

Data availability

N/A.

Code availability

N/A.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruwaya, K., Mokone, J.G., Chiririwa, H. et al. Application of Unmodified Brachystegia spiciformis Leaf Biomass in the Adsorption of Nitrate Ions. Chemistry Africa 4, 1007–1014 (2021). https://doi.org/10.1007/s42250-021-00282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00282-4

Keywords

Navigation