Skip to main content

Advertisement

Log in

Increasing the Adsorption Efficiency of Methylene Blue by Acid Treatment of the Plant Carpobrotus edulis

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This article deals with the valorization of local natural materials of vegetable origin, which are less expensive and non-toxic through their use in water treatment. We have shown that the acid solution (HCl, 0.5 N) pretreatment of the Carpobrotus edulis plant increases its adsorbent potential towards Methylene Blue and reduces the levels of soluble organic matter that can be released into the water. The bio-adsorbents were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Elemental Analysis (EDX), Zero Point of Charge (PHz), Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD5). The acid treatment allows a reduction in soluble organic matter characterized by a decrease in BOD5 and COD of 91.9% and 88.3% respectively. For the initial concentration of 100 mg/L of MB, the biomaterial obtained after acid treatment (HMCE) has an equilibrium adsorption capacity of 19.61 mg/g compared to 9.91 mg/g for the native plant (NCE). Acid treatment also reduces the amount of adsorbent required to achieve a maximum rate of adsorption. pH, temperature and ionic strength do not have a major influence on the adsorption of Methylene Blue on the biomaterials studied. This adsorption follows the pseudo-second order kinetic model and is represented by the Langmuir and Freundlich isotherms. It is a spontaneous and endothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Shi C, Tao F, Cui Y (2018) Evaluation of nitriloacetic acid modified cellulose film on adsorption of methylene blue. Int J Biol Macromol 114:400–407. https://doi.org/10.1016/j.ijbiomac.2018.03.146

    Article  CAS  PubMed  Google Scholar 

  2. Bergaoui M, Nakhli A, Benguerba Y, Khalfaoui M, Erto A, Edi FS, Ismadji S, Ernst B (2018) Novel insights into the adsorption mechanism of methylene blue onto organo-bentonite: adsorption isotherms modeling and molecular simulation. J Mol Liq 272:697–707. https://doi.org/10.1016/j.molliq.2018.10.001

    Article  CAS  Google Scholar 

  3. Manna S, Roy D, Saha P, Gopakumar D, Thomas S (2017) Rapid methylene blue adsorption using modified lignocellulosic materials. Process Saf Environ Prot 107:346–356. https://doi.org/10.1016/j.psep.2017.03.008

    Article  CAS  Google Scholar 

  4. Gillman PK, Gillman PK (2011) CNS toxicity involving methylene blue: the exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity. J Psychopharmacol 25(3):429–436. https://doi.org/10.1177/0269881109359098

    Article  CAS  PubMed  Google Scholar 

  5. Ng BKW, Cameron AJD (2010) The role of methylene blue in serotonin syndrome: a systematic review. Psychosomatics 51(3):194–200. https://doi.org/10.1016/S0033-3182(10)70685-X

    Article  PubMed  Google Scholar 

  6. Balarak D, Mahdavi Y, Ghorzin F, Sadeghi S (2016) Biosorption of acid blue 113 dyes using dried lemna minor biomass. Sci J Environ Sci 5:152–158

    CAS  Google Scholar 

  7. Valliammai S, Nagaraja KS, Jeyaraj B (2015) Removal of acid blue 113 dyes from aqueous solution by activated carbon of varagu millet husk : equilibrium, kinetics and thermodynamic studies. Int J ChemTech Res 8(12):329–341

    CAS  Google Scholar 

  8. Mouni L, Belkhiri L, Bollinger JC, Bouzaza A, Assadi A, Tirri A, Dahmoune F, Madani Kh, Remini H (2018) Removal of Methylene Blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies. Appl Clay Sci 153:38–45. https://doi.org/10.1016/j.clay.2017.11.034

    Article  CAS  Google Scholar 

  9. Youcef LD, Belaroui LS, López-galindo A (2019) Adsorption of a cationic methylene blue dye on an Algerian palygorskite. Appl Clay Sci 179(May):105–145. https://doi.org/10.1016/j.clay.2019.105145

    Article  CAS  Google Scholar 

  10. Dabagh A, Bagui A, Abali M, Aziam R, Chiban M, Sinan F, Zerbet M (2020) Adsorption of crystal violet from aqueous solution onto eco-friendly native Carpobrotus edulis plant. Mater Today Proc

  11. Aziam R, Chiban M, Eddaoudi H, Soudani A, Zerbet M, Sinan F (2017) Kinetic modeling, equilibrium isotherm and thermodynamic studies on a batch adsorption of anionic dye onto eco-friendly dried Carpobrotus edulis plant. Eur Phys J Spec Top 226(5):977–992. https://doi.org/10.1140/epjst/e2016-60256-x

    Article  CAS  Google Scholar 

  12. Mosa AA, El-ghamry A (2011) Chemically modified crop residues as a low-cost technique for the removal of heavy metal ions from wastewater. Water Air Soil Pollut 217:637–647. https://doi.org/10.1007/s11270-010-0616-5

    Article  CAS  Google Scholar 

  13. Ngah WSW, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Biores Technol 99:3935–3948. https://doi.org/10.1016/j.biortech.2007.06.011

    Article  CAS  Google Scholar 

  14. Abidar F, Morghi M, Abali M, Sinan F, Chiban M, Eddaoudi H, Zebret M (2017) Orthophosphate ion adsorption onto raw shrimp shellsAdsorption des ions orthophosphates sur carapaces de crevettes à l’état brut. Rev Sci Eau 29(3):197. https://doi.org/10.7202/1038924ar

    Article  CAS  Google Scholar 

  15. Akkaoui O, El Rhaouat O, Fraine CH, Fareh M, Najy M, El Kharrim KH, Belghyti D (2017) Hydro geochemistry of groundwaters of the area of Oulmes. Int J Innov Appl Stud 13:396–400

    Google Scholar 

  16. Abali M, Ait Ichou A, Dabagh A, Chiban M, Zerbet M, Sinan F (2018) Improvement of the purification performance of the wastewater treatment plant (wwtp) of stabilization ponds type: removal of sulfate and nitrate ions by adsorption onto micro-particles of shrimp-shells waste. J Appl Surf Interfaces 4:17–23

    Google Scholar 

  17. Wang G, Zhang S (2018) Removal of Pb ( II ) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arab J Chem 11(1):99–110. https://doi.org/10.1016/j.arabjc.2015.06.011

    Article  CAS  Google Scholar 

  18. Chen H, Zhao J, Dai G, Wu J, Yan H (2010) Adsorption characteristics of Pb ( II ) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. DES 262(1–3):174–182. https://doi.org/10.1016/j.desal.2010.06.006

    Article  CAS  Google Scholar 

  19. Lasheen MR, Ammar NS, Ibrahim HS (2012) Adsorption/desorption of Cd ( II ), Cu ( II ) and Pb ( II ) using chemically modified orange peel: Equilibrium and kinetic studies. Solid State Sci 14(2):202–210. https://doi.org/10.1016/j.solidstatesciences.2011.11.029

    Article  CAS  Google Scholar 

  20. Barka N, Abdennouri M, El M, Qourzal S (2013) Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. J Environ Chem Eng 1(3):144–149. https://doi.org/10.1016/j.jece.2013.04.008

    Article  CAS  Google Scholar 

  21. Chakravarty P, Sen SN, Sarma HP (2010) Removal of lead ( II ) from aqueous solution using heartwood of Areca catechu powder. DES 256(1–3):16–21. https://doi.org/10.1016/j.desal.2010.02.029

    Article  CAS  Google Scholar 

  22. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  23. Ho YS, Fellow GM (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot 76(1):83–91

    Google Scholar 

  24. Langmuir I (1916) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  25. Freundlich H (1906) Phys. Chem. Soc 40: 1361.

  26. Temkin M I (1941) J. Phys. Chem. (USSR) 15: 296

  27. Namasivayam C, Jeya Kumar R, Yamuna RT (1994) Dye removal from wastewater by adsorption on waste Fe(III)/Cr(III) hydroxide. Waste Manage 14:643–648

    Article  CAS  Google Scholar 

  28. Chahm T, Martins BA, Rodrigues CA (2018) Adsorption of methylene blue and crystal violet on low-cost adsorbent: waste fruits of Rapanea ferruginea (ethanol-treated and H2SO4-treated). Environ Earth Sci 77:508

    Article  Google Scholar 

  29. Babaei AA, Ahmadi M, Goudarzi G, Jaafarzadeh N, Baboli Z (2016) Adsorption of chromium(VI) from saline wastewater using spent tea-supported magnetite nanoparticle. Desalin Water Treat 57:12244–12256

    Article  CAS  Google Scholar 

  30. Etim UJ, Umoren SA, Eduok UM (2016) Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J Saudi Chem Soc 20:67–76

    Article  Google Scholar 

  31. Mashhadi S, Javadian H, Ghasemi M, Saleh AT, Grupta KV (2015) Microwave-induced H2SO4 activation of activated carbon derived from rice agricultural wastes for sorption of methylene blue from aqueous solution. Desalin Water Treat 47:21091–21104

    Google Scholar 

  32. Hameed BH, Mahmoud DK, Ahmad AL (2018) Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low -cost adsorbent: coconut (Cocos nucifera) bunch waste. J Hazard Mater 158:65–72

    Article  Google Scholar 

  33. Ayalew AA, Aragaw TA (2020) Utilization of treated coffee husk as low-cost bio-sorbent for adsorption of methylene blue. Adsorpt Sci Technol 38:5–6

    Article  Google Scholar 

  34. He J, Hong S, Zhang L, Gan F, Ho YS (2010) Equilibrium and thermodynamic parameters of adsorption of Methylene Blue onto rectorite. Fresenius Environ Bull 19:2651–2656

    CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Dabagh.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabagh, A., Bagui, A., Abali, M. et al. Increasing the Adsorption Efficiency of Methylene Blue by Acid Treatment of the Plant Carpobrotus edulis. Chemistry Africa 4, 585–598 (2021). https://doi.org/10.1007/s42250-021-00233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00233-z

Keywords

Navigation