Skip to main content
Log in

Polymer-Based Membranes and Composites for Safe, Potable, and Usable Water: A Survey of Recent Advances

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In the past decades, the demand for potable and usable water has been on a continual increase, while its availability has been on an exponential decline. Studies have argued that, by 2050, only a small fraction of the world’s population will have access to clean and safe water, thereby exposing a significant portion of the population to a serious water crisis. Large volumes of wastewater are generated yearly, both domestically and industrially, and the necessity to develop effective and efficient strategies and technologies to recover these wastewaters and turn them into safe and reusable waters is a momentous concern among scientists and policymakers. Across the globe, governments are developing approaches and strategies to mitigate both short- and long-term water challenges resulting from various anthropogenic activities that have contributed to the rising degradation of water quality, coupled with the attendant negative impact of natural disasters, increasing urbanization, among others. Notwithstanding, the advancements in nanotechnology have made it possible to engineer novel and innovative polymer-based materials and composites that possess desirable and even predictable properties for targeted applications, which has presented the opportunity for the development of cost-effective nanotechnologies and processes employed in water remediation, reclamation, purification, and treatment processes worldwide. Nevertheless, these innovative technologies and processes have also been shown to have their limitations and challenges in the enhancement of water quality. Herein we survey the current advancement of selected polymer-based membranes and composites and their intervention for the production of safe, potable, and usable water, as well as their limitations, challenges, recommendations, and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

adapted from the Food and Agriculture Organization (FAO) of the United Nations [12]

Fig. 3
Fig. 4
Fig. 5

reproduced with permission from John Wiley & Sons, Inc

Fig. 6

reproduced with permission from Springer Nature 2020

Fig. 7

reproduced with permission from John Wiley & Sons Inc

Scheme 1

reproduced with permission from Elsevier Science Ltd

Scheme 2

reproduced with permission from Elsevier science Ltd

Similar content being viewed by others

References

  1. Billings WD, Lange OL (1976) Water and plant life: problems and modern approaches. Springer, Berlin

    Google Scholar 

  2. Galiani S, Gertler P, Schargrodsky E (2005) Water for life: the impact of the privatization of water services on child mortality. J Polit Econ 113:83–120. https://doi.org/10.1086/426041

    Article  Google Scholar 

  3. Palmer R, Short D, Auch T (2020) The human right to water and unconventional energy, 39–67. https://doi.org/10.1007/978-3-030-18342-4_3

  4. UN (2010) 64/292. The human right to water and sanitation. General Assembly 64:3

  5. Sultana F, Loftus A (2013) The right to water: politics, governance and social struggles

  6. Hoag RW (2011) International covenant on economic, social, and cultural rights. In: Encyclopedia of global justice. https://www.ohchr.org/EN/ProfessionalInterest/Pages/CESCR.aspx. Accessed 24 Apr 2020

  7. Flörke M, Kynast E, Bärlund I, Eisner S, Wimmer F, Alcamo J (2013) Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Glob Environ Change 23:144–156. https://doi.org/10.1016/j.gloenvcha.2012.10.018

    Article  Google Scholar 

  8. Szabo S (2016) Urbanisation, human capital and safe drinking. Water. https://doi.org/10.1007/978-3-319-26571-1_4

    Article  Google Scholar 

  9. FAO (2020) Food and Agriculture Organization of the United Nations. https://www.fao.org/land-water/water/en/. Accessed 24 Jan 2020

  10. (2020) Water. In: Agriculture at crossroads. https://www.globalagriculture.org/report-topics/water.html. Accessed 6 Jan 2020

  11. McNabb DE (2019) Agriculture and inefficient water use. Global pathways to water sustainability. Palgrave Macmillan, Cham, pp 99–115

    Chapter  Google Scholar 

  12. FAO (2001) Economic valuation of water resources in agriculture. https://www.fao.org/3/y5582e/y5582e08.htm. Accessed 22 Mar 2020

  13. United Nations (2015) Water and sanitation—United Nations sustainable development. In: Sustainable development goals. https://www.un.org/sustainabledevelopment/water-and-sanitation/. Accessed 5 Jan 2020

  14. FAO (2015) Towards a water and food secure future: critical perspectives for policy-makers. Food and agriculture organization of the United Nations, Marseille

    Google Scholar 

  15. Boretti A, Rosa L (2019) Reassessing the projections of the World Water Development Report. npj Clean Water 2. https://doi.org/10.1038/s41545-019-0039-9

  16. Kadri F, Birregah B, Châtelet E (2014) The impact of natural disasters on critical infrastructures: a domino effect-based study. J Homel Secur Emerg Manag 11:217–241. https://doi.org/10.1515/jhsem-2012-0077

    Article  Google Scholar 

  17. Steffen W, Sanderson A, Tyson PD, Jäger J, Matson PA, Moore B, Oldfield IF, Richardson K, Schellnhuber HJ, Turner BL, Wasson IRJ (2004) Global change and the earth system: a planet under pressure. Springer, Sweden

    Google Scholar 

  18. Wu S, Liu L, Gao J, Wang W (2019) Integrate risk from climate change in China under global warming of 1.5 and 2.0 °C. Earth’s Future 7:1307–1322. https://doi.org/10.1029/2019EF001194

    Article  Google Scholar 

  19. Hoffman R (2014) Alien Benthic Algae and seagrasses in the Mediterranean Sea and their connection to global warming. In: The Mediterranean Sea: its history and present challenges, pp 159–181. https://doi.org/10.1007/978-94-007-6704-1_10

  20. Herrera-Estrada JE, Martinez JA, Dominguez F, Findell KL, Wood EF, Sheffield J (2019) Reduced moisture transport linked to drought propagation across North America. Geophys Res Lett 46:5243–5253. https://doi.org/10.1029/2019GL082475

    Article  Google Scholar 

  21. Glatzel M (2019) Domino Droughts. In: Standford—water in the west. https://waterinthewest.stanford.edu/news-events/news-insights/domino-droughts. Accessed 28 Mar 2020

  22. Starr JR (1991) Water wars. Foreign Policy 82:17–36. https://doi.org/10.2307/1148639

    Article  Google Scholar 

  23. Ilyas Bhatti M (2018) Water—the next frontier for international conflicts. In: World Environmental and water resources congress 2018: international perspectives, history and heritage, emerging technologies, and student papers—selected papers from the world environmental and water resources congress 2018, pp 203–211. https://doi.org/10.1061/9780784481394.019

  24. EEA (2019) Water use and environmental pressures—European Environment Agency. https://www.eea.europa.eu/themes/water/european-waters/water-use-and-environmental-pressures/water-use-and-environmental-pressures#toc-3. Accessed 13 Jan 2020

  25. Brown TC, Mahat V, Ramirez JA (2019) Adaptation to future water shortages in the United States caused by population growth and climate change. Earth’s Future 7:219–234. https://doi.org/10.1029/2018EF001091

    Article  Google Scholar 

  26. Wang J, Li Y, Huang J, Yan T, Sun T (2017) Growing water scarcity, food security and government responses in China. Glob Food Secur 14:9–17. https://doi.org/10.1016/j.gfs.2017.01.003

    Article  Google Scholar 

  27. du Plessis A (2019) Current and future water scarcity and stress. Water as an inescapable risk. Springer water. Springer, Cham, pp 13–25

    Chapter  Google Scholar 

  28. National Audit Office (2020) Water supply and demand management. Department for Environment Food and Rural Affairs, United Kingdom

    Google Scholar 

  29. Wada Y, Flörke M, Hanasaki N, Eisner S, Fischer G, Tramberend S, Satoh Y, Van Vliet MTH, Yillia P, Ringler C, Burek P, Wiberg D (2016) Modeling global water use for the 21st century: the water futures and solutions (WFaS) initiative and its approaches. Geosci Model Dev 9:175–222. https://doi.org/10.5194/gmd-9-175-2016

    Article  Google Scholar 

  30. Garrick DE, Hall JW, Dobson A, Damania R, Grafton RQ, Hope R, Hepburn C, Bark R, Boltz F, De Stefano L, O’Donnell E, Matthews N, Money A (2017) Valuing water for sustainable development. Science 358:1003–1005. https://doi.org/10.1126/science.aao4942

    Article  CAS  PubMed  Google Scholar 

  31. Hutton G, Varughese M (2016) The costs of meeting the 2030 sustainable development goal targets on drinking water, sanitation, and hygiene: summary report. In: The costs of meeting the 2030 sustainable development goal targets on drinking water, sanitation, and hygiene: summary report. https://doi.org/10.1596/k8632

  32. Mekonnen MM, Hoekstra AY (2016) Sustainability: four billion people facing severe water scarcity. Sci Adv. https://doi.org/10.1126/sciadv.1500323

    Article  PubMed  PubMed Central  Google Scholar 

  33. Odhiambo GO (2017) Water scarcity in the Arabian Peninsula and socio-economic implications. Appl Water Sci 7:2479–2492. https://doi.org/10.1007/s13201-016-0440-1

    Article  Google Scholar 

  34. Zahid M, Rashid A, Akram S, Rehan ZA, Razzaq W (2018) A comprehensive review on polymeric nano-composite membranes for water treatment. J Membr Sci Technol. https://doi.org/10.4172/2155-9589.1000179

    Article  Google Scholar 

  35. Li R, Zhang L, Wang P (2015) Rational design of nanomaterials for water treatment. Nanoscale 7:17167–17194. https://doi.org/10.1039/c5nr04870b

    Article  CAS  PubMed  Google Scholar 

  36. Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V (2018) Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Membr Sci 550:173–197. https://doi.org/10.1016/j.memsci.2017.12.071

    Article  CAS  Google Scholar 

  37. Wang D (2019) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26:687–701. https://doi.org/10.1007/s10570-018-2143-2

    Article  CAS  Google Scholar 

  38. Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164. https://doi.org/10.1016/j.ccr.2017.11.003

    Article  CAS  Google Scholar 

  39. Saleh TA, Parthasarathy P, Irfan M (2019) Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends Environ Anal Chem. https://doi.org/10.1016/j.teac.2019.e00067

    Article  Google Scholar 

  40. Vikrant K, Kim KH (2019) Nanomaterials for the adsorptive treatment of Hg (II) ions from water. Chem Eng J 358:264–282. https://doi.org/10.1016/j.cej.2018.10.022

    Article  CAS  Google Scholar 

  41. Brief T (2011) Nanotechnology: new name, old science. Drug Dev Deliv 11:1–2

    Google Scholar 

  42. Tolochko NK (2009) History of nanotechnologies—nanoscience and nanotechnologies. Encyclopedia of life support systems

  43. FDA (2017) Nanotechnology Task Force Report 2007. https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force-report-2007#definitions. Accessed 15 Jan 2020

  44. Gogotsi Y (2017) Nanomaterials handbook, 2nd edn. Taylor & Francis Inc., Boca Raton

    Book  Google Scholar 

  45. Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65:491–516. https://doi.org/10.1016/j.compscitech.2004.11.003

    Article  CAS  Google Scholar 

  46. Twardowski TE (2008) Introduction to nanocomposite materials: properties, processing, characterization. DEStech Publications, Inc

  47. Haghi AK, Oluwafemi OS, Jose JP, Maria HJ (2013) Composites and nanocomposites, 1st edn. Apple Academic Press Inc, New Jersey

    Book  Google Scholar 

  48. Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A (2018) Nanomaterials history, classification, unique properties, production and market. Emerg Appl Nanopart Architect Nanostruct Curr Prospects Future Trends. https://doi.org/10.1016/B978-0-323-51254-1.00012-9

    Article  Google Scholar 

  49. Agrawal DC (2013) Introduction to nanoscience and nanomaterials. World Scientific Publishing Co. Pte. Ltd., Singapore

    Book  Google Scholar 

  50. Beltrán-Gastélum M, Salazar-Gastélum MI, Flores-Hernández JR, Botte GG, Pérez-Sicairos S, Romero-Castañon T, Reynoso-Soto E, Félix-Navarro RM (2019) Pt-Au nanoparticles on graphene for oxygen reduction reaction: stability and performance on proton exchange membrane fuel cell. Energy 181:1225–1234. https://doi.org/10.1016/j.energy.2019.06.033

    Article  CAS  Google Scholar 

  51. Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D (2020) Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomaterials. https://doi.org/10.3390/nano10010140

    Article  PubMed  PubMed Central  Google Scholar 

  52. Riaz S, Ashraf M, Hussain T, Hussain MT, Younus A (2019) Fabrication of robust multifaceted textiles by application of functionalized TiO2 nanoparticles. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2019.123799

    Article  Google Scholar 

  53. Chakraborty S, Jo BW, Yoon Y-S (2020) Development of nano cement concrete by top-down and bottom-up nanotechnology concept. Smart Nanoconcretes Cement Based Mater. https://doi.org/10.1016/b978-0-12-817854-6.00007-6

    Article  Google Scholar 

  54. Salami P, Liu P, Allen CG, Chopra N, Halfyard KI (2020) Silver nanoparticle ink. US10563079B2

  55. Gusain R, Kumar N, Ray SS (2020) Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2019.213111

    Article  Google Scholar 

  56. Bhat IUH, Anwar SJ, Subramaniam E, Shalla AH (2019) Nanoparticles; their use as antibacterial and DNA cleaving agents. Adv Struct Mater 118:71–85. https://doi.org/10.1007/978-981-13-9833-9_4

    Article  Google Scholar 

  57. Shukla SK (2019) Polymeric materials for clean water. Springer Nature Switzerland, AG

    Google Scholar 

  58. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109. https://doi.org/10.1039/c2ee21818f

    Article  CAS  Google Scholar 

  59. Kim K, Cotty S, Elbert J, Chen R, Hou CH, Su X (2019) asymmetric redox-polymer interfaces for electrochemical reactive separations: synergistic capture and conversion of arsenic. Adv Mater. https://doi.org/10.1002/adma.201906877

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li D, Yan Y, Wang H (2016) Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog Polym Sci 61:104–155. https://doi.org/10.1016/j.progpolymsci.2016.03.003

    Article  CAS  Google Scholar 

  61. Fuwad A, Ryu H, Malmstadt N, Kim SM, Jeon TJ (2019) Biomimetic membranes as potential tools for water purification: preceding and future avenues. Desalination 458:97–115. https://doi.org/10.1016/j.desal.2019.02.003

    Article  CAS  Google Scholar 

  62. Ali S, Rehman SAU, Luan HY, Farid MU, Huang H (2019) Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Sci Total Environ 646:1126–1139. https://doi.org/10.1016/j.scitotenv.2018.07.348

    Article  CAS  PubMed  Google Scholar 

  63. Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33. https://doi.org/10.1016/j.desal.2010.11.033

    Article  CAS  Google Scholar 

  64. Aminabhavi TM, Mallikarjuna NN, Kulkarni PV (2005) Polymeric membranes. In: Polymer News. https://www.solectamembranes.com/polymeric-membranes. Accessed 19 Jan 2020

  65. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28. https://doi.org/10.1016/j.susmat.2016.02.001

    Article  CAS  Google Scholar 

  66. Visakh PM, Nazarenko O (2016) Nanostructured polymer membranes: processing and characterization, vol 1. Scrivener Publishing LLC

  67. Luo J, Cao W, Ding L, Zhu Z, Wan Y, Jaffrin MY (2012) Treatment of dairy effluent by shear-enhanced membrane filtration: the role of foulants. Sep Purif Technol 96:194–203. https://doi.org/10.1016/j.seppur.2012.06.009

    Article  CAS  Google Scholar 

  68. Al Aani S, Wright CJ, Atieh MA, Hilal N (2017) Engineering nanocomposite membranes: addressing current challenges and future opportunities. Desalination 401:1–15. https://doi.org/10.1016/j.desal.2016.08.001

    Article  CAS  Google Scholar 

  69. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275. https://doi.org/10.1016/j.memsci.2014.11.019

    Article  CAS  Google Scholar 

  70. Noamani S, Niroomand S, Rastgar M, Sadrzadeh M (2019) Carbon-based polymer nanocomposite membranes for oily wastewater treatment. npj Clean Water 2. https://doi.org/10.1038/s41545-019-0044-z

  71. Nasir A, Masood F, Yasin T, Hameed A (2019) Progress in polymeric nanocomposite membranes for wastewater treatment: preparation, properties and applications. J Ind Eng Chem 79:29–40. https://doi.org/10.1016/j.jiec.2019.06.052

    Article  CAS  Google Scholar 

  72. Guo R, Jiao T, Li R, Chen Y, Guo W, Zhang L, Zhou J, Zhang Q, Peng Q (2018) Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal. ACS Sustain Chem Eng 6:1279–1288. https://doi.org/10.1021/acssuschemeng.7b03635

    Article  CAS  Google Scholar 

  73. Liu Y, Hou C, Jiao T, Song J, Zhang X, Xing R, Zhou J, Zhang L, Peng Q (2018) Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials. https://doi.org/10.3390/nano8010035

    Article  PubMed  PubMed Central  Google Scholar 

  74. Choi Y, Kim HA, Kim KW, Lee BT (2018) Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J Environ Sci (China) 66:50–60. https://doi.org/10.1016/j.jes.2017.04.028

    Article  Google Scholar 

  75. Huang B, Wei ZB, Yang LY, Pan K, Miao AJ (2019) Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae. Environ Sci Technol 53:3871–3879. https://doi.org/10.1021/acs.est.8b07001

    Article  CAS  PubMed  Google Scholar 

  76. Huang Y, Li H, Wang L, Qiao Y, Tang C, Jung C, Yoon Y, Li S, Yu M (2015) Ultrafiltration membranes with structure-optimized graphene-oxide coatings for antifouling oil/water separation. Adv Mater Interfaces. https://doi.org/10.1002/admi.201400433

    Article  Google Scholar 

  77. Prince JA, Bhuvana S, Anbharasi V, Ayyanar N, Boodhoo KVK, Singh G (2016) Ultra-wetting graphene-based PES ultrafiltration membrane—a novel approach for successful oil-water separation. Water Res 103:311–318. https://doi.org/10.1016/j.watres.2016.07.042

    Article  CAS  PubMed  Google Scholar 

  78. Liu N, Zhang M, Zhang W, Cao Y, Chen Y, Lin X, Xu L, Li C, Feng L, Wei Y (2015) Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. J Mater Chem A 3:20113–20117. https://doi.org/10.1039/c5ta06314k

    Article  CAS  Google Scholar 

  79. Yang G, Xie Z, Cran M, Ng D, Gray S (2019) Enhanced desalination performance of poly(vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering. J Membr Sci 579:40–51. https://doi.org/10.1016/j.memsci.2019.02.034

    Article  CAS  Google Scholar 

  80. Xu S, Li F, Su B, Hu MZ, Gao X, Gao C (2019) Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination. Desalination. https://doi.org/10.1016/j.desal.2018.04.004

    Article  Google Scholar 

  81. Davood Abadi Farahani MH, Vatanpour V (2018) Polymer/carbon nanotubes mixed matrix membranes for water purification. Nanoscale Mater Water Purif. https://doi.org/10.1016/B978-0-12-813926-4.00009-4

    Article  Google Scholar 

  82. Wen Y, Yuan J, Ma X, Wang S, Liu Y (2019) Polymeric nanocomposite membranes for water treatment: a review. Environ Chem Lett 17:1539–1551. https://doi.org/10.1007/s10311-019-00895-9

    Article  CAS  Google Scholar 

  83. Moura Bernardes A, Zoppas Ferreira J, Siqueira Rodrigues MA (2014) Electrodialysis and water reuse: novel approaches. Springer, Berlin

    Book  Google Scholar 

  84. Moura Bernardes A (2014) General aspects of membrane separation processes. In: Electrodialysis and water reuse: novel approaches, pp 3–9

  85. Sarpong KA, Xu W, Huang W, Yang W (2019) The development of molecularly imprinted polymers in the clean-up of water pollutants: a review. Am J Anal Chem 10:202–226. https://doi.org/10.4236/ajac.2019.105017

    Article  CAS  Google Scholar 

  86. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci (Oxford) 29:699–766. https://doi.org/10.1016/j.progpolymsci.2004.03.002

    Article  CAS  Google Scholar 

  87. Hüseynli S, Çimen D, Bereli N, Denizli A (2019) Molecular imprinted based quartz crystal microbalance nanosensors for mercury detection. Glob Chall 3:1800071. https://doi.org/10.1002/gch2.201800071

    Article  PubMed  Google Scholar 

  88. Lay B, Sabri YM, Ippolito SJ, Bhargava SK (2014) Galvanically replaced Au-Pd nanostructures: study of their enhanced elemental mercury sorption capacity over gold. Phys Chem Chem Phys 16:19522–19529. https://doi.org/10.1039/c4cp02233e

    Article  CAS  PubMed  Google Scholar 

  89. Abdalla NS, Youssef MA, Algarni H, Awwad NS, Kamel AH (2019) All solid-state poly (vinyl chloride) membrane potentiometric sensor integrated with nano-beads imprinted polymers for sensitive and rapid detection of bispyribac herbicide as organic pollutant. Molecules. https://doi.org/10.3390/molecules24040712

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lu Y, Yu G, Wei X, Zhan C, Jeon J-W, Wang X, Jeffryes C, Guo Z, Wei S, Wujcik EK (2019) Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Adv Compos Hybrid Mater 2:711–719. https://doi.org/10.1007/s42114-019-00122-7

    Article  CAS  Google Scholar 

  91. Moghaddasi A, Sobolčiak P, Popelka A, Sadasivuni KK, Spitalsky Z, Krupa I (2019) Electrically conductive electrospun polymeric mats for sensing dispersed vegetable oil impurities in wastewater. Processes 7:906. https://doi.org/10.3390/pr7120906

    Article  CAS  Google Scholar 

  92. Hu R, Tang R, Xu J, Lu F (2018) Chemical nanosensors based on molecularly-imprinted polymers doped with silver nanoparticles for the rapid detection of caffeine in wastewater. Anal Chim Acta 1034:176–183. https://doi.org/10.1016/j.aca.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  93. Ginsberg MD, Hock VF (2004) Terrorism and security of water distribution systems: a primer. Defense Secur Anal 20:373–380. https://doi.org/10.1080/1475179042000305822

    Article  Google Scholar 

  94. Rytwo G (2017) Hybrid clay-polymer nanocomposites for the clarification of water and effluents. In: Recent patents on nanotechnology, pp 181–193

  95. Rytwo G (2012) The use of clay-polymer nanocomposites in wastewater pretreatment. Sci World J. https://doi.org/10.1100/2012/498503

    Article  Google Scholar 

  96. Abiola ON (2019) Polymers for coagulation and flocculation in water treatment. In: Das R (ed) Polymeric materials for clean water. Springer Nature Switzerland, AG, pp 77–92

    Chapter  Google Scholar 

  97. Unuabonah EI, Taubert A (2014) Clay-polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl Clay Sci 99:83–92. https://doi.org/10.1016/j.clay.2014.06.016

    Article  CAS  Google Scholar 

  98. Rytwo G (2015) Method for pretreatment of wastewater and recreational water with nanocomposites and bridging polymers WO/2015/022695 PCT/IL2014/050738, pp 1–37

  99. Lin S, Li Q, Zhong Y, Li J, Zhao X, Wang M, Zhao G, Pan J, Zhu H (2020) Cross-linked double network graphene oxide/polymer composites for efficient coagulation-flocculation. Glob Chall 4:1900051. https://doi.org/10.1002/gch2.201900051

    Article  PubMed  Google Scholar 

  100. Loganathan P, Gradzielski M, Bustamante H, Vigneswaran S (2020) Progress, challenges, and opportunities in enhancing NOM flocculation using chemically modified chitosan: a review towards future development. Environ Sci Water Res Technol 6:45–61. https://doi.org/10.1039/c9ew00596j

    Article  CAS  Google Scholar 

  101. Wang T, Ma B, Jin A, Li X, Zhang X, Wang W, Cai Y (2018) Facile loading of Ag nanoparticles onto magnetic microsphere by the aid of a tannic acid—metal polymer layer to synthesize magnetic disinfectant with high antibacterial activity. J Hazard Mater 342:392–400. https://doi.org/10.1016/j.jhazmat.2017.08.047

    Article  CAS  PubMed  Google Scholar 

  102. Haider MS, Shao GN, Imran SM, Park SS, Abbas N, Tahir MS, Hussain M, Bae W, Kim HT (2016) Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater Sci Eng C 62:732–745. https://doi.org/10.1016/j.msec.2016.02.025

    Article  CAS  Google Scholar 

  103. Vijayalakshmi S, Kumar E, Venkatesh PS, Raja A (2020) Preparation of zirconium oxide with polyaniline nanocatalyst for the decomposition of pharmaceutical industrial wastewater. Ionics 26:1507–1513. https://doi.org/10.1007/s11581-019-03323-8

    Article  CAS  Google Scholar 

  104. Pandey S, Do JY, Kim J, Kang M (2020) Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2019.115597

    Article  Google Scholar 

  105. Ahmaruzzaman M (2019) Nano-materials: novel and promising adsorbents for water treatment. Asian J Water Environ Pollut 16:43–53. https://doi.org/10.3233/AJW190032

    Article  Google Scholar 

  106. Ahmad N, Sultana S, Khan MZ, Sabir S (2020) Chitosan based nanocomposites as efficient adsorbents for water treatment. In: Oves M, Ansari MO, Khan MZ, Shahadat M, Ismail IMI (eds) Modern age waste water problems. Springer, Cham, pp 69–83

    Chapter  Google Scholar 

  107. Albukhari SM, Ismail M, Akhtar K, Danish EY (2019) Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf A 577:548–561. https://doi.org/10.1016/j.colsurfa.2019.05.058

    Article  CAS  Google Scholar 

  108. Simate GS, Ndlovu S, Iyuke SE, Walubita LF (2013) Biotechnology and nanotechnology: a means for sustainable development in Africa. In: Chemistry for sustainable development in Africa, pp 159–191

  109. Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nat Nanotechnol 2:663–664. https://doi.org/10.1038/nnano.2007.350

    Article  CAS  PubMed  Google Scholar 

  110. Berger M (2017) Nanotechnology for developing countries. In: Nanowerk. https://www.nanowerk.com/spotlight/spotid=47432.php. Accessed 17 July 2020

  111. Hashem EA (2014) Nanotechnology in water treatment, case study: Egypt. J Econ Dev Stud. https://doi.org/10.15640/jeds.v2n3a18

    Article  Google Scholar 

  112. Gupta PD, Muthukumar A, Shilpa V, Abubakar G, Sood PP (2017) Nanotechnology in drinking water purification: a critical review. J Cell Tissue Res 17:6315–6321

    CAS  Google Scholar 

  113. Obiechina GO, Rimande Joel R (2018) Water Pollution and Environmental Challenges in Nigeria. Educ Res Int 7

  114. Jama AA, Mourad KA (2018) Assessing the institutional setups and the impacts of shared responsibilities in poor water services: a case study of Garowe, Somalia

  115. Balthazard-Accou K, Emmanuel E, Agnamey P, Raccurt C (2020) Pollution of water resources and environmental impacts in urban areas of developing countries: case of the City of Les Cayes (Haiti). Environ Health Manag Prev Pract. https://doi.org/10.5772/intechopen.86951

    Article  Google Scholar 

  116. Iroegbu AOC, Sadiku ER, Ray SS, Hamam Y (2020) Plastics in municipal drinking water and wastewater treatment plant effluents: challenges and opportunities for South Africa—a review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08194-5

    Article  Google Scholar 

  117. Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182. https://doi.org/10.1016/j.watres.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  118. Magnusson K, Norén F (2014) Screening of microplastic particles in and down-stream a wastewater treatment plant

  119. Murphy F, Ewins C, Carbonnier F, Quinn B (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50:5800–5808. https://doi.org/10.1021/acs.est.5b05416

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors (SSR and AOCI) would like to thank the Council for Scientific and Industrial Research (HGER74p) and Department of Science and Innovation (HGERA8x) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suprakas Sinha Ray or Austine Ofondu Chinomso Iroegbu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S.S., Iroegbu, A.O.C. & Bordado, J.C. Polymer-Based Membranes and Composites for Safe, Potable, and Usable Water: A Survey of Recent Advances. Chemistry Africa 3, 593–608 (2020). https://doi.org/10.1007/s42250-020-00166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00166-z

Keywords

Navigation