Skip to main content
Log in

Biochar from the Thermochemical Conversion of Orange (Citrus sinensis) Peel and Albedo: Product Quality and Potential Applications

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Orange (Citrus sinensis) is a popular fruit in west Africa that generates residues such as peels (OP) and albedo (OA) from its consumption. In this study, the biochar obtained from the char-optimised thermochemical conversion of orange peels and albedo were evaluated. The products obtained was characterised using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM–EDS) and Branueur–Emmett–Teller (BET) Analyses and potential applications were discussed. FTIR analysis revealed similar spectra for both samples and possessing polar groups such as alcohol, esters, ketones, aldehydes, carboxylic, ether and phenols which are characteristic of low-temperature biochar. The EDS analysis showed that OP biochar possess higher carbon content than OA biochar whilst the latter contains more inorganic elements. SEM analysis revealed that OP biochar possess a smooth surface as compared to the highly convoluted surface of the OA biochar. BET analysis revealed that the surface area was 352.5 m2 g−1 and 356.3 m2 g−1 for OP and OA biochar, respectively. Several key conclusions on the potential applications were proposed based on the analytical findings and these include soil amendment, adsorbents and as catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana—a review. Renew Sustain Energy Rev 15(8):3539–3551

    Article  Google Scholar 

  2. Odesola IF, Owoseni AT (2010) Development of local technology for a small-scale biochar production processes from agricultural wastes. J Emerg Trends Eng Appl Sci 1(2):205–208

    Google Scholar 

  3. Tippayawong N, Rerkkriangkrai P, Aggarangsi P, Pattiya A (2017) Biochar production from cassava rhizome in a semi-continuous carbonisation system. Energy Proced 141:109–113

    Article  CAS  Google Scholar 

  4. Carrier M, Hardie AG, Uras Ü, Görgens J, Knoetze JH (2012) Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J Anal Appl Pyrol 96:24–32

    Article  CAS  Google Scholar 

  5. Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578

    Article  CAS  Google Scholar 

  6. Chee CS (1987) The air gasification of wood chips in a downdraft gasifier, in Department of Chemical Engineering. Kansas State University

  7. James AM, Yuan W, Boyette MD, Wang D (2017) Airflow and insulation effects on simultaneous syngas and biochar production in a top-lit updraft biomass gasifier. Renew Energy. https://doi.org/10.1016/j.renene.2017.10.034

    Article  Google Scholar 

  8. Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11(23):6613–6621

    Article  Google Scholar 

  9. Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind Eng Chem Res 51(26):9023–9031

    Article  CAS  Google Scholar 

  10. Olgun H, Ozdogan S, Yinesor G (2011) Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues. Biomass Bioenergy 35(1):572–580

    Article  CAS  Google Scholar 

  11. Zainal Z, Rifau A, Quadir G, Seetharamu K (2002) Experimental investigation of a downdraft biomass gasifier. Biomass Bioenerg 23(4):283–289

    Article  CAS  Google Scholar 

  12. Liu Z, Quek A, Hoekman SK, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949

    Article  CAS  Google Scholar 

  13. Ghani WAWAK, Mohd A, da Silva G, Bachmann RT, Taufiq-Yap YH, Rashid U, Alaa H (2013) Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind Crops Prod 44:18–24

    Article  CAS  Google Scholar 

  14. Zolue GM (2013) Characterization of biochar prepared from three different feed stocks. University of Ghana

  15. Özçimen D, Ersoy-Meriçboyu A (2010) Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew Energy 35(6):1319–1324

    Article  CAS  Google Scholar 

  16. Sadaka S, Sharara MA, Ashworth A, Keyser P, Allen F, Wright A (2014) Characterization of biochar from switchgrass carbonization. Energies 7(2):548–567

    Article  CAS  Google Scholar 

  17. Adeniyi AG, Ighalo JO, Onifade DV (2019) Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels. https://doi.org/10.1080/17597269.2018.1554949

    Article  Google Scholar 

  18. Schneider D, Escala M, Supawittayayothin K, Tippayawong N (2011) Characterization of biochar from hydrothermal carbonization of bamboo. Int J Energy Environ 2(4):647–652

    CAS  Google Scholar 

  19. Özçimen D, Karaosmanoğlu F (2004) Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energy 29(5):779–787

    Article  CAS  Google Scholar 

  20. Srinivasan P, Sarmah AK, Smernik R, Das O, Farid M, Gao W (2015) A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. Sci Total Environ 512:495–505

    Article  PubMed  CAS  Google Scholar 

  21. Pathak PD, Mandavgane SA, Kulkarni BD (2017) Fruit peel waste: characterization and its potential uses. Curr Sci 113:1–11

    Article  CAS  Google Scholar 

  22. Lagha-Benamrouche S, Madani K (2013) Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: peels and leaves. Ind Crops Prod 50:723–730

    Article  CAS  Google Scholar 

  23. Ángel Siles López J, Li Q, Thompson IP (2010) Biorefinery of waste orange peel. Crit Rev Biotechnol 30(1):63–69

    Article  PubMed  CAS  Google Scholar 

  24. Parmar HS, Kar A (2007) Protective role of Citrus sinensis, Musa paradisiaca, and Punica granatum peels against diet-induced atherosclerosis and thyroid dysfunctions in rats. Nutr Res 27(11):710–718

    Article  CAS  Google Scholar 

  25. Santos CM, Dweck J, Viotto RS, Rosa AH, Morais LCD (2015) Application of orange peel waste in the production of solid biofuels and biosorbents. Bioresour Technol 20:20

    Google Scholar 

  26. Miranda R, Bustos-Martinez D, Blanco CS, Villarreal MHGR, Cantu MER (2009) Pyrolysis of sweet orange (Citrus sinensis) dry peel. J Anal Appl Pyrolysis 86:234–251

    Article  CAS  Google Scholar 

  27. Qambrani NA, Rahman MM, Won S, Shim S, Ra C (2017) Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sustain Energy Rev 79:255–273

    Article  CAS  Google Scholar 

  28. El-Nahas S, Salman HM, Seleeme WA (2019) Aluminum building scrap wire, take-out food container, potato peels and bagasse as valueless waste materials for nitrate removal from water supplies. Chem Afr 2(1):143–162

    Article  CAS  Google Scholar 

  29. Canlas JJ, Go JC, Mendoza AC, Dimaano MN (2019) Talisay (Terminalia catappa) seed husk biochar for adsorption of lead (II) ions in artificially contaminated soil. In: MATEC web of conferences. EDP Sciences

  30. Salam A, Bashir S, Khan I, Shahid Rizwan M, Afzal Chhajro M, Feng X, Zhu J, Hu H (2018) Biochars immobilize lead and copper in naturally contaminated soil. Environ Eng Sci 35(12):1349–1360

    Article  CAS  Google Scholar 

  31. Hu X, Zhang X, Ngo HH, Guo W, Wen H, Li C, Zhang Y, Ma C (2019) Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci Total Environ 20:135544

    Google Scholar 

  32. Mireles S, Parsons J, Trad T, Cheng C-L, Kang J (2019) Lead removal from aqueous solutions using biochars derived from corn stover, orange peel, and pistachio shell. Int J Environ Sci Technol 2019:1–10

    Google Scholar 

  33. Li X, Zhao C, Zhang M (2019) Biochar for anionic contaminants removal from water. Biochar from biomass and waste. Elsevier, Oxford, pp 143–160

    Chapter  Google Scholar 

  34. Yoon K, Lee SS, Ok YS, Kwon EE, Song H (2019) Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue. Appl Energy 254:113803

    Article  CAS  Google Scholar 

  35. Sial TA, Lan Z, Khan MN, Zhao Y, Kumbhar F, Liu J, Zhang A, Hill RL, Lahori AH, Memon M (2019) Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil biochemical properties within a loess soil. Waste Manag 87:125–134

    Article  CAS  PubMed  Google Scholar 

  36. Adeniyi AG, Ighalo JO, Onifade DV (2019) Production of bio-char from plantain (Musa paradisiaca) fibers using an Updraft biomass gasifier with retort heating. Combust Sci Technol. https://doi.org/10.1080/00102202.2019.1650269

    Article  Google Scholar 

  37. Abdelhafez AA, Li J (2016) Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. J Taiwan Inst Chem Eng 61:367–375

    Article  CAS  Google Scholar 

  38. Xie Z, Guan W, Ji F, Song Z, Zhao Y (2014) Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology. J Chem 2014:20

    Google Scholar 

  39. Nascimento GED, Duarte MMMB, Campos NF, Rocha ORSD, Silva VLD (2014) Adsorption of azo dyes using peanut hull and orange peel: a comparative study. Environ Technol 35(11):1436–1453

    Article  PubMed  CAS  Google Scholar 

  40. Puccini M, Licursi D, Stefanelli E, Vitolo S, Raspolli Galletti A, Heeres HJ (2016) Levulinic acid from orange peel waste by hydrothermal carbonization (HTC)

  41. Khaskheli MI, Memon SQ, Siyal AN, Khuhawar M (2011) Use of orange peel waste for arsenic remediation of drinking water. Waste Biomass Valor 2(4):423

    Article  CAS  Google Scholar 

  42. Zhang X, Fu W, Yin Y, Chen Z, Qiu R, Simonnot M-O, Wang X (2018) Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: batch experiment, kinetic and mechanism studies. Biores Technol 268:149–157

    Article  CAS  Google Scholar 

  43. Basaleh AA, Al-Malack MH, Saleh TA (2019) Methylene blue removal using polyamide-vermiculite nanocomposites: kinetics, equilibrium and thermodynamic study. J Environ Chem Eng 7(3):103107

    Article  CAS  Google Scholar 

  44. Chomto P, Nunthanid J (2017) Physicochemical and powder characteristics of various citrus pectins and their application for oral pharmaceutical tablets. Carbohyd Polym 174:25–31

    Article  CAS  Google Scholar 

  45. Janakiraman N, Johnson M (2015) Functional groups of tree ferns (Cyathea) using FTIR: chemotaxonomic implications. Rom J Biophys 25(2):131–141

    Google Scholar 

  46. Grube M, Muter O, Strikauska S, Gavare M, Limane B (2008) Application of FT-IR spectroscopy for control of the medium composition during the biodegradation of nitro aromatic compounds. J Ind Microbiol Biotechnol 35(11):1545–1549

    Article  CAS  PubMed  Google Scholar 

  47. Xu J, Wang W, Gao J, Wang A (2017) Fabrication of stable glycine/palygorskite nanohybrid via high-pressure homogenization as high-efficient adsorbent for Cs (I) and methyl violet. J Taiwan Inst Chem Eng 80:997–1005

    Article  CAS  Google Scholar 

  48. Dai H, Ou S, Huang Y, Huang H (2018) Utilization of pineapple peel for production of nanocellulose and film application. Cellulose 25(3):1743–1756

    Article  CAS  Google Scholar 

  49. Li P-J, Xia J-L, Nie Z-Y, Shan Y (2016) Pectic oligosaccharides hydrolyzed from orange peel by fungal multi-enzyme complexes and their prebiotic and antibacterial potentials. LWT Food Sci Technol 69:203–210

    Article  CAS  Google Scholar 

  50. Cybulak M, Sokołowska Z, Boguta P, Tomczyk A (2019) Influence of pH and grain size on physicochemical properties of biochar and released humic substances. Fuel 240:334–338

    Article  CAS  Google Scholar 

  51. Vaughn SF, Kenar JA, Eller FJ, Moser BR, Jackson MA, Peterson SC (2015) Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Ind Crops Prod 66:44–51

    Article  CAS  Google Scholar 

  52. Li Y, Liu X, Cai W, Cao Y, Sun Y, Tan F (2018) Preparation of corn straw based spongy aerogel for spillage oil capture. Korean J Chem Eng 35(5):1119–1127

    Article  CAS  Google Scholar 

  53. Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification—a review. Chem Eng J 270:244–271

    Article  CAS  Google Scholar 

  54. Mary GS, Sugumaran P, Niveditha S, Ramalakshmi B, Ravichandran P, Seshadri S (2016) Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recycl Organ Waste Agric 5(1):43–53

    Article  Google Scholar 

  55. Piash MI, Hossain MF, Parveen Z (2016) Physico-chemical properties and nutrient content of some slow pyrolysis biochars produced from different feedstocks. Bangl J Sci Res 29(2):111–122

    Article  Google Scholar 

  56. Vidhya L, Dhandapani M, Shanthi K (2017) Sequestering divalent nickel ions from aqueous solution using activated carbon of citrus Limetta peel: isothermic and kinetic studies. Pol J Environ Stud 26:4

    Article  CAS  Google Scholar 

  57. Taek-Keun O, Bongsu C, Yoshiyuki S, Jiro C (2012) Characterization of biochar derived from three types of biomass. J Fac Agric Kyushu Univ 57:61–66

    Google Scholar 

  58. Lam SS, Liew RK, Wong YM, Yek PNY, Ma NL, Lee CL, Chase HA (2017) Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J Clean Prod 162:1376–1387

    Article  CAS  Google Scholar 

  59. Taghavi F, Gholizadeh M, Saljooghi AS, Ramezani M (2016) Metal free synthesis of tetrahydrobenzo [a] xanthenes using orange peel as a natural and low cost efficient heterogeneous catalyst. RSC Adv 6(90):87082–87087

    Article  CAS  Google Scholar 

  60. Raj K, Viswanathan B (2009) Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile

  61. Suliman W, Harsh JB, Abu-Lail NI, Fortuna A-M, Dallmeyer I, Garcia-Pérez M (2017) The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci Total Environ 574:139–147

    Article  CAS  PubMed  Google Scholar 

  62. Saad A, Snoussi Y, Abderrabba M, Chehimi MM (2016) Ligand-modified mesoporous silica SBA-15/silver hybrids for the catalyzed reduction of methylene blue. Rsc Adv 6(62):57672–57682

    Article  CAS  Google Scholar 

  63. Snoussi Y, Abderrabba M, Sayari A (2016) Removal of cadmium from aqueous solutions by adsorption onto polyethylenimine-functionalized mesocellular silica foam: equilibrium properties. J Taiwan Inst Chem Eng 66:372–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua O. Ighalo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical standards

This article does not contain any studies involving human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeniyi, A.G., Ighalo, J.O. & Onifade, D.V. Biochar from the Thermochemical Conversion of Orange (Citrus sinensis) Peel and Albedo: Product Quality and Potential Applications. Chemistry Africa 3, 439–448 (2020). https://doi.org/10.1007/s42250-020-00119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00119-6

Keywords

Navigation