Skip to main content
Log in

Nanosensor-based on TiO2 nanoparticles coated with cationic surfactant for the determination of 2,4-D in fruits and vegetables

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This study engineered an electrochemical electrode designed for the susceptible detection of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) through sophisticated electrochemical methodologies. The electrode, denoted as CTAB/TiO2-CPE, was synthesized by integrating titanium oxide (TiO2) nanoparticles into a carbon paste electrode (CPE) and introducing cetyltrimethylammonium bromide (CTAB) as a surfactant to the electrolyte solution. Comparative analysis revealed that the CTAB/TiO2-CPE exhibited superior sensitivity compared to the unmodified CPE, showcasing an impressive lower limit of detection at 0.23 × 10−8 M. A meticulous examination of pH influence demonstrated that the phosphate buffer saline (PB) induced the highest peak current at a pH of 3.0. Exploring scan rate variations enabled the quantitative assessment of various physicochemical attributes. The fabricated electrode was systematically employed to quantify 2,4-D levels across diverse environmental samples, including soil, fruits, vegetables, and water. The results, characterized by a high degree of precision, underscore the reliability of the proposed electrode, demonstrating a commendable success rate in sample recoveries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. B. Goswami, D. Mahanta, Fe3O4-Polyaniline nanocomposite for non-enzymatic electrochemical detection of 2, 4-dichlorophenoxyacetic acid. ACS Omega 6, 17239–17246 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. Prabhu, S.J. Malode, N.P. Shetti, R.M. Kulkarni, Analysis of herbicide and its applications through a sensitive electrochemical technique based on MWCNTs/ZnO/CPE fabricated sensor. Chemosphere 287, 132086 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. G. Fusco, F. Gallo, C. Tortolini, P. Bollella, F. Ietto, A. De Mico, A. D’Annibale, R. Antiochia, G. Favero, F. Mazzei, AuNPs-functionalized PANABA-MWCNTs nanocomposite-based impedimetric immunosensor for 2, 4-dichlorophenoxy acetic acid detection. Biosens. Bioelectron. 93, 52–56 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. C.Y. Kwan, W. Chu, Photodegradation of 2, 4-dichlorophenoxyacetic acid in various iron-mediated oxidation systems. Water Res. 37, 4405–4412 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. D. Peng, X. Li, L. Zhang, J. Gong, Novel visible-light-responsive photoelectrochemical sensor of 2, 4-dichlorophenoxyacetic acid using molecularly imprinted polymer/BiOI nanoflake arrays. Electrochem. Commun. 47, 9–12 (2014)

    Article  CAS  Google Scholar 

  6. C.R. De Arcaute, S. Soloneski, M.L. Larramendy, Toxic and genotoxic effects of the 2, 4-dichlorophenoxyacetic acid (2, 4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus. Ecotoxicol. Environ. Safety 128, 222–229 (2016)

    Article  Google Scholar 

  7. K. Prabhu, S.J. Malode, N.P. Shetti, Highly sensitive electrochemical sensor for the detection and quantification of Linuron based on silica gel modified carbon paste electrode. Environ. Technol. Innov. 23, 101687 (2021)

    Article  CAS  Google Scholar 

  8. K. Skrzypczyńska, K. Kuśmierek, A. Świątkowski, Carbon paste electrodes modified with various carbonaceous materials for the determination of 2,4-dichlorophenoxyacetic acid by differential pulse voltammetry. J. Electroanal. Chem. 766, 8–15 (2016)

    Article  Google Scholar 

  9. F. Liu, A. Zhong, Q. Xu, H. Cao, X. Hu, Inhibition of 2, 4-dichlorophenoxyacetic acid to catalase immobilized on hierarchical porous calcium phosphate: Kinetic aspect and electrochemical biosensor construction. J. Phys. Chem. C 120, 15966–15975 (2016)

    Article  CAS  Google Scholar 

  10. M. Ding, W. Chen, H. Xu, Z. Shen, T. Lin, K. Hu, Q. Kong, G. Yang, Z. Xie, Heterogeneous Fe2CoTi3O10-MXene composite catalysts: Synergistic effect of the ternary transition metals in the degradation of 2, 4-dichlorophenoxyacetic acid based on peroxymonosulfate activation. Chem. Eng. J. 378, 122177 (2019)

    Article  CAS  Google Scholar 

  11. M. Pirsaheb, A. Dargahi, S. Hazrati, M. Fazlzadehdavil, Removal of diazinon and 2, 4-dichlorophenoxyacetic acid (2, 4-D) from aqueous solutions by granular-activated carbon. Desalin. Water Treat. 52, 4350–4355 (2014)

    Article  CAS  Google Scholar 

  12. N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, Efficient degradation of 2, 4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes. Chem. Eng. J. 320, 436–447 (2017)

    Article  CAS  Google Scholar 

  13. A. Dargahi, D. Nematollahi, G. Asgari, R. Shokoohi, A. Ansari, M.R. Samarghandi, et al., RSC Adv. 8, 39256–39268 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J.-M. Fontmorin, S. Huguet, F. Fourcade, F. Geneste, D. Floner, A. Amrane, Electrochemical oxidation of 2, 4-Dichlorophenoxyacetic acid: Analysis of by-products and improvement of the biodegradability. Chem. Eng. J. 195, 208–217 (2012)

    Article  Google Scholar 

  15. J. Cai, M. Zhou, Y. Liu, A. Savall, K.G. Serrano, Indirect electrochemical oxidation of 2, 4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Chemosphere 204, 163–169 (2018)

    Article  CAS  PubMed  Google Scholar 

  16. J. Li, W. Guan, X. Yan, Z. Wu, W. Shi, Photocatalytic ozonation of 2, 4-dichlorophenoxyacetic acid using LaFeO3 photocatalyst under visible light irradiation. Catal. Letters 148, 23–29 (2018)

    Article  CAS  Google Scholar 

  17. K.H.H. Aziz, H. Miessner, S. Mueller, A. Mahyar, D. Kalass, D. Moeller, I. Khorshid, M.A.M. Rashid, Comparative study on 2, 4-dichlorophenoxyacetic acid and 2, 4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor. J. Hazard. Mater. 343, 107–115 (2018)

    Article  Google Scholar 

  18. M. Khairy, H.A. Ayoub, C.E. Banks, Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem. 255, 104–111 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. S.K. Praveen, G.K. Jayaprakash, M. Abbas, B. Rikhari, S. Kalikeri, Some progress in developing electrochemical sensors for detection of 2, 4-dichlorophenoxyacetic acid based on modified carbon interfaces: a brief review. J. Electrochem. Sci. Eng. 13, 923–936 (2023)

    Google Scholar 

  20. K. Rambabu, G. Bharath, A. Avornyo, A. Thanigaivelan, A. Hai, F. Banat, Valorization of date palm leaves for adsorptive remediation of 2,4-dichlorophenoxyacetic acid herbicide polluted agricultural runoff. Environ. Pollut. 316, 120612 (2023)

    Article  CAS  PubMed  Google Scholar 

  21. K. Rambabu, J. AlYammahi, G. Bharath, A. Thanigaivelan, N. Sivarajasekar, F. Banat, Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide. Chemosphere 282, 131103 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. N. Kumar, 2,4-D ethyl ester poisoning: A case report. Indian J. Crit. Care Med. 23, 432–433 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  23. A. Wong, M.D.P.T. Sotomayor, Biomimetic sensor based on 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron (III) chloride and MWCNT for selective detection of 2,4-D. Sens. Actuators B Chem. 181, 332–339 (2013)

    Article  CAS  Google Scholar 

  24. Y. Ozkan, E. Altuntas, B. Ozturk, K. Yildiz, O. Saracoglu, The effect of NAA (1-naphthalene acetic acid) and AVG (aminoethoxyvinylglycine) on physical, chemical, colour and mechanical properties of Braeburn apple. Int. J. Food Eng. 8 (2012)

  25. Z. Zhou, T. Liu, S. Zhu, F. Song, W. Zhang, W. Yang, W. Xu, Synthesis and characterization of sensitive molecularly imprinting electrochemical sensor based on chitosan modified aminoated hierarchical porous silica-supported gold for detection of 2, 4-dichlorophenoxyacetic acid. Microchem. J. 181, 107593 (2022)

    Article  CAS  Google Scholar 

  26. K.-S. Loh, Y. Lee, A. Musa, A. Salmah, I. Zamri, Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors 8, 5775–5791 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L. Killedar, D. Ilager, S.J. Malode, N.P. Shetti, Fast and Facile electrochemical detection and determination of fungicide carbendazim at titanium dioxide designed carbon-based sensor. Mater. Chem. Phys. 285, 126131 (2022)

    Article  CAS  Google Scholar 

  28. M.M. Shanbhag, N.P. Shetti, S.J. Malode, R.S. Veerapur, K.R. Reddy, Cholesterol intercalated 2D graphene oxide sheets fabricated sensor for voltammetric analysis of theophylline. FlatChem 28, 100255 (2021)

    Article  CAS  Google Scholar 

  29. K. Prabhu, S.J. Malode, R.M. Kulkarni, N.P. Shetti, Electro-sensing base for hazardous pesticide 2, 4-DCP and its quantification in real samples at ZnO@Cu core-shell nanoparticles in the presence of cationic surfactant. Mater. Chem. Phys. 278, 125705 (2022)

    Article  CAS  Google Scholar 

  30. S.J. Malode, K. Prabhu, B.G. Pollet, S.S. Kalanur, N.P. Shetti, Preparation and performance of WO3/rGO modified carbon sensor for enhanced electrochemical detection of triclosan. Electrochim. Acta 429, 141010 (2022)

    Article  CAS  Google Scholar 

  31. K. Prabhu, S.J. Malode, N.P. Shetti, Carbon-based electrochemical sensor for the detection and degradation of persistent toxic carbendazim in soil and water sample. Electrocatal. 14, 88–97 (2023)

    Article  CAS  Google Scholar 

  32. J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. R. Moradi, S.A. Sebt, H. Karimi-Maleh, R. Sadeghi, F. Karimi, A. Bahari, H. Arabi, Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Phys. Chem. Chem. Phys. 15, 5888–5897 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. H. Karimi-Maleh, K. Ahanjan, M. Taghavi, M. Ghaemy, Electrocatalytic and simultaneous determination of ascorbic acid, nicotinamide adenine dinucleotide and folic acid at ruthenium (II) complex-ZnO/CNTs nanocomposite modified carbon paste electrode. Anal. Methods 8, 1780–1788 (2016)

    Article  CAS  Google Scholar 

  35. S.J. Malode, K. Prabhu, S.S. Kalanur, N. Meghani, N.P. Shetti, WO3/rGO nanocomposite-based sensor for the detection and degradation of 4-Chlorophenol. Chemosphere 312, 137302 (2023)

    Article  CAS  PubMed  Google Scholar 

  36. K. Prabhu, S.J. Malode, N.P. Shetti, S. Pandiaraj, A. Alodhayb, M. Muthuramamoorthy, Determination of fungicide at Ru-doped TiO2/reduced graphene oxide decorated electrochemical sensor. Microchem. J. 197, 109722 (2024)

    Article  CAS  Google Scholar 

  37. J. Andersen, M. Pelaez, L. Guay, Z. Zhang, K. O’Shea, D.D. Dionysiou, NF-TiO2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: Emerging synergies, degradation intermediates, and reusable attributes. J. Hazard. Mater. 260, 569–575 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. S.J. Malode, K. Prabhu, N.P. Shetti, K.R. Reddy, Highly sensitive electrochemical assay for selective detection of Aminotriazole based on TiO2/poly(CTAB) modified sensor. Environ. Technol. Innov. 21, 101222 (2021)

    Article  CAS  Google Scholar 

  39. J. Wang, R. Guo, Z. Bi, X. Chen, X. Hu, W. Pan, A review on TiO2−x-based materials for photocatalytic CO2 reduction. Nanoscale 14, 11512–11528 (2022)

    Article  CAS  PubMed  Google Scholar 

  40. N.P. Shetti, D.S. Nayak, S.J. Malode, R.M. Kulkarni, An electrochemical sensor for clozapine at ruthenium doped TiO2 nanoparticles modified electrode. Sens. Actuators B Chem. 247, 858–867 (2017)

    Article  CAS  Google Scholar 

  41. I. Soni, G. Kudur Jayaprakash, A short review on the analysis of the adsorptive behavior of surfactants at carbon paste electrodes for electrochemical sensing. J. Mol. Liq. 388, 122737 (2023)

    Article  CAS  Google Scholar 

  42. G.K. Jayaprakash, B.E. Kumara Swamy, S. Rajendrachari, S.C. Sharma, R. Flores-Moreno, Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications. J. Mol. Liq. 334, 116348 (2021)

    Article  CAS  Google Scholar 

  43. G. Jashari, I. Švancara, M. Sỳs, Characterisation of carbon paste electrodes bulk-modified with surfactants for measurements in nonaqueous media. Electrochim. Acta 410, 140047 (2022)

    Article  CAS  Google Scholar 

  44. M.-A. Goulet, M. Skyllas-Kazacos, E. Kjeang, The importance of wetting in carbon paper electrodes for vanadium redox reactions. Carbon 101, 390–398 (2016)

    Article  CAS  Google Scholar 

  45. C. Chen, J. Ma, Y. Wang, Z. Yi, S. Wang, H. Gao, X. Wu, G. Liu, H. Yang, CTAB-assisted synthesis of Bi2MoO6 hierarchical microsphere and its application as a novel efficient and recyclable adsorbent in removing organic pollutants. Colloids Surf. A: Physicochem. Eng. Asp. 656, 130441 (2023)

    Article  CAS  Google Scholar 

  46. H. Wang, H. Zhu, Y. Zhang, J. Pu, Highly active Ni/CeO2 for the steam reforming of acetic acid using CTAB as surfactant template. Int. J. Hydrog. Energy 47, 27493–27507 (2022)

    Article  CAS  Google Scholar 

  47. S.C. Dhawale, A.V. Munde, B.B. Mulik, R.P. Dighole, S.S. Zade, B.R. Sathe, CTAB-assisted synthesis of FeNi Alloy nanoparticles: effective and stable electrocatalysts for urea oxidation reactions. Langmuir 40, 2672–2685 (2024)

    Article  CAS  PubMed  Google Scholar 

  48. D.N. Unal, S. Yıldırım, S. Kurbanoglu, B. Uslu, Current trends and roles of surfactants for chromatographic and electrochemical sensing. TrAC, Trends Anal. Chem. 144, 116418 (2021)

    Article  CAS  Google Scholar 

  49. M.R. Housaindokht, F. Janati-Fard, N. Ashraf, Recent advances in applications of surfactant-based voltammetric sensors. J. Surfactants Deterg. 24, 873–895 (2021)

    Article  CAS  Google Scholar 

  50. S.M. Shaban, J. Kang, D.-H. Kim, Surfactants: Recent advances and their applications. CompComm. 22, 100537 (2020)

    Google Scholar 

  51. B. Kamenická, T. Weidlich, I. Švancara, Voltammetric determination of flufenamic acid and adsorption studies with biochar in the absence/presence of cetyltrimethylammonium bromide. Talanta 266, 125073 (2024)

    Article  PubMed  Google Scholar 

  52. H.A. Barzani, H.S. Ali, O. Yunusoğlu, Y. Yardım, Sensing ivacaftor accomplished using the square-wave voltammetric technique with the assistance of a cationic surfactant on a boron-doped diamond electrode. Diam. Relat. Mater. 144, 110932 (2024)

    Article  CAS  Google Scholar 

  53. A.G. Mehairi, R. Khoshnazar, M.M. Husein, Stability of CO2/N2 foam generated in CaCO3 nanoparticle/CTAB aqueous dispersion. Chem. Eng. Sci. 286, 119643 (2024)

    Article  CAS  Google Scholar 

  54. Z. Cheng, H. Song, Z. Li, L. Chen, H. Hu, Y. Lv, Z. Liu, Y. Wu, Y. Lu, D. Han, Hierarchical composites based on near-spherical ZnO attached on nitrogen-doped reduced graphene oxide for enhanced nitrite electrochemical sensing property. Microchem. J. 197, 109764 (2024)

    Article  CAS  Google Scholar 

  55. M.M. Karkare, Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view. Int. Nano Lett. 4, 111 (2014)

    Article  Google Scholar 

  56. J. Choi, H. Park, M.R. Hoffmann, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783–792 (2010)

    Article  CAS  Google Scholar 

  57. F.G. Lether, P.R. Wenston, An algorithm for the numerical evaluation of the reversible Randles-Sevcik function. Comput. Chem. 11, 179–183 (1987)

    Article  Google Scholar 

  58. A.J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and applications. Surf. Technol. 20, 91–92 (1983)

    Article  Google Scholar 

  59. E. Laviron, The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem. Interf. Electrochem. 100, 263–270 (1979)

    Article  CAS  Google Scholar 

  60. L.A. Currie, Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl. Chem. 67, 1699–1723 (1995)

    Article  CAS  Google Scholar 

  61. A.M. Committee, Is my calibration linear? Analyst 119, 2363–2366 (1994)

    Article  Google Scholar 

  62. K. Danzer, L.A. Currie, Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998). Pure Appl. Chem. 70, 993–1014 (1998)

    Article  CAS  Google Scholar 

  63. N. Maleki, A. Safavi, H.R. Shahbaazi, Electrochemical determination of 2,4-D at a mercury electrode. Anal. Chim. Acta 530, 69–74 (2005)

    Article  CAS  Google Scholar 

  64. F. Ramos de Andrade, R. Alves de Toledo, C.M.P. Vaz. Electroanalytical methodology for the direct determination of 2,4-dichlorophenoxyacetic acid in soil samples using a graphite-polyurethane electrode. Int. J. Electrochem. e308926 (2014)

  65. X. Wang, J. Yu, X. Wu, J. Fu, Q. Kang, D. Shen, J. Li, L. Chen, A molecular imprinting-based turn-on ratiometric fluorescence sensor for highly selective and sensitive detection of 2, 4-dichlorophenoxyacetic acid (2, 4-D). Biosens. Bioelectron. 81, 438–444 (2016)

    Article  CAS  PubMed  Google Scholar 

  66. W. Li, J. Wu, R. Yang, D. Song, F. Long, A portable evanescent wave optic fiber immunosensor for sensitive and rapid detection of 2, 4-D in water samples. J. Geosci. Environ. Prot. 5, 42–45 (2017)

    Google Scholar 

  67. N.P. Shetti, S.J. Malode, S.T. Nandibewoor, Oxidation of 6-aminopenicillanic acid by an alkaline Copper(III) periodate complex in the absence and presence of Ruthenium(III) as a homogeneous catalyst. Polyhedron 30, 1785–1798 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Mondal thanks ORNL for their support and encouragement.

Funding

Dr. Nagaraj P. Shetti thanks the Government of India’s SERB for assisting with a research grant with project number SRG/2022/001174. Dr. Shweta J. Malode acknowledges VGST, Government of Karnataka, for the research grant in RGS-F scheme with GRD No. 1071. Prof. Abdullah N. Alodhayb acknowledges Researchers Supporting Project number (RSP2024R304), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shweta J. Malode, Kunal Mondal or Nagaraj P. Shetti.

Ethics declarations

Competing interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, K., Malode, S.J., Mondal, K. et al. Nanosensor-based on TiO2 nanoparticles coated with cationic surfactant for the determination of 2,4-D in fruits and vegetables. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00703-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00703-3

Keywords

Navigation