Skip to main content
Log in

NiO nanostructures based functional none-enzymatic electrochemical sensor for ultrasensitive determination of endosulfan in vegetables

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In an effort to develop a rapid, sensitive and improved electrochemical sensing approach for the selective oxidation of endosulfan, nickel oxide nanoparticles (NiO NPs) were anchored on glassy carbon electrode (GCE). The fabrication of NPs was accomplished via aqueous chemical growth method and subjected to different analytical tools for the determination of surface characteristics, crystallinity and elemental composition. The XRD and FESEM reveal a high crystallinity and nano seeds like morphology for the synthesized NPs with the average size of 22 nm. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) approaches were exploited for the investigation of electrochemical behaviour of modified electrode labelled as (NiO/GCE). A significantly enhanced response of NiO/GCE for the determination of endosulfan manifested the salient role of the developed sensor in facilitating the charge transfer mechanism between the electrode’s surface and the analyte. Differential pulse voltammetry (DPV) was utilized to quantify the amount of endosulfan. The certain parameters were optimized for the fluent determination process of endosulfan such as phosphate buffer of pH 7, scan rate 80 mV/s and potential range from − 0.6 to 0.8. The DPV (Ipa) response was linear over 0.05–25 µM range with the limit of detection of 0.17 nM and limit of quantification 0.51 nM respectively. The applicability of proposed sensor was investigated in real vegetable samples that showed acceptable percent recoveries for tomato and spinach samples which were calculated to be 94, 91, 87.3% and 98, 103, 100.2% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Lee et al., Application of immunoassays to studies of the environmental fate of endosulfan. J. Agric. Food Chem. 45(10), 4147–4155 (1997)

    Article  CAS  Google Scholar 

  2. S.M. Peterson, G. Batley, The fate of endosulfan in aquatic ecosystems. Environ. Pollut. 82(2), 143–152 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. S.M. Naqvi, C. Vaishnavi, Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals. Comp. Biochem. Physiol. Part C 105(3), 347–361 (1993)

    Article  CAS  Google Scholar 

  4. J. Patočka et al., Clinical aspects of the poisoning by the pesticide endosulfan. Quim. Nova 39(8), 987–994 (2016)

    Google Scholar 

  5. V.A. Brandt et al., Exposure to endosulfan in farmers: two case studies. Am. J. Ind. Med. 39(6), 643–649 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. H. Kucuker et al., Fatal acute endosulfan toxicity: a case report. Basic Clin. Pharmacol. Toxicol. 104(1), 49–51 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. J.M. Moon, B.J. Chun, Acute endosulfan poisoning: a retrospective study. Hum. Exp. Toxicol. 28(5), 309–316 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. V. Moses, J.V. Peter, Acute intentional toxicity: endosulfan and other organochlorines. Clin. Toxicol. 48(6), 539–544 (2010)

    Article  CAS  Google Scholar 

  9. E.W. Matshes, B. McKenzie, E.O. Lew, Lethal neurotoxicity induced by endosulfan ingestion. Acad. Forensic Pathol. 2(1), 100–103 (2012)

    Article  Google Scholar 

  10. C. Wesseling, M. Corriols, V. Bravo, Acute pesticide poisoning and pesticide registration in Central America. Toxicol. Appl. Pharmacol. 207(2), 697–705 (2005)

    Article  PubMed  Google Scholar 

  11. S. Sunitha, V. Krishnamurthy, R. Mahmood. Analysis of endosulfan residues in cultivated soils in Southern India. in Proceedings of International Conference on Biotechnology and Environment Management (IACSIT Press, Singapore, 2011)

  12. A. Dewan et al., Repeated episodes of endosulfan poisoning. J. Toxicol. Clin. Toxicol. 42(4), 363–369 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. S.S. Peshin et al., Pesticide poisoning trend analysis of 13 years: a retrospective study based on telephone calls at the National Poisons Information Centre, All India Institute of Medical Sciences, New Delhi. J. Forensic Leg. Med. 22, 57–61 (2014)

    Article  PubMed  Google Scholar 

  14. A. Jindal, N. Sankhyan, Endosulfan poisoning resulting from skin exposure. Indian J. Pediatrics 79(8), 1104–1104 (2012)

    Article  Google Scholar 

  15. G. Neild et al., Endosulfan and black urine. NDT Plus 4(5), 353 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Yadla et al., Acute kidney injury in endosulfan poisoning. Saudi J. Kidney Dis. Transplant. 24(3), 592–592 (2013)

    Article  Google Scholar 

  17. S. Viswanathan, K.S. Jayakrishnan, V. Vijan, Endosulfan and black urine. Nephrol. Dial. Transplant. Plus 4(5), 353–353 (2011)

    Google Scholar 

  18. N. Liu et al., Rapid detection of endosulfan by a molecularly imprinted polymer microsphere modified quartz crystal microbalance. Anal. Methods 5(17), 4442–4447 (2013)

    Article  CAS  Google Scholar 

  19. J. Castro et al., Analysis of endosulfan isomers and endosulfan sulfate in air and tomato leaves by gas chromatography with electron-capture detection and confirmation by gas chromatography–mass spectrometry. J. Chromatogr. A 947(1), 119–127 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. G. Liu et al., An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal. Chem. 84(9), 3921–3928 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. Z. Shamsadin-Azad et al., A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact. 13(3), 1781–1787 (2019)

    Article  Google Scholar 

  22. M. Bijad et al., An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact. 12(1), 634–640 (2018)

    Article  Google Scholar 

  23. N.H. Khand et al., Functional Co3O4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples. J. Nanostruct. Chem. 1–14

  24. A. Hyder et al., A highly discerning p-tetranitrocalix [4] arene (p-TNC4) functionalized copper nanoparticles: a smart electrochemical sensor for the selective determination of diphenhydramine drug. Microchem. J. 163, 105908 (2020)

    Article  Google Scholar 

  25. S.A. Memon et al., Plant material protected cobalt oxide nanoparticles: sensitive electro-catalyst for tramadol detection. Microchem. J. 159, 105480 (2020)

    Article  CAS  Google Scholar 

  26. Y. Bow et al., Molecularly Imprinted Polymers (MIP) based electrochemical sensor for detection of endosulfan pesticide. Int. J. Adv. Sci. Eng. Inf. Technol. 7(2), 662–668 (2017)

    Article  Google Scholar 

  27. H. El Bakouri et al., Electrochemical analysis of endosulfan using a C18-modified carbon-paste electrode. Chemosphere 60(11), 1565–1571 (2005)

    Article  PubMed  Google Scholar 

  28. A.B. Jamil et al., Current perspective and developments in electrochemical sensors modified with nanomaterials for environmental and pharmaceutical analysis. Curr. Anal. Chem. 16, 1–1 (2020)

    Article  Google Scholar 

  29. Z. Zhang et al., Nanomaterials-based electrochemical immunosensors. Micromachines 10(6), 397 (2019)

    Article  PubMed Central  Google Scholar 

  30. S. Su, S. Chen, C. Fan, Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. Green Energy Environ. 3(2), 97–106 (2018)

    Article  Google Scholar 

  31. J.A. Buledi et al., CuO nanostructures based electrochemical sensor for simultaneous determination of hydroquinone and ascorbic acid. Electroanalysis 32(7), 1600–1607 (2020)

    Article  CAS  Google Scholar 

  32. T.A. Dontsova, S.V. Nahirniak, I.M. Astrelin, Metaloxide nanomaterials and nanocomposites of ecological purpose. J. Nanomater. 2019

  33. J.A. Buledi et al., A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ. Sci. Pollut. Res. 1–9 (2020)

  34. S. Amin et al., Recent trends in development of nanomaterials based green analytical methods for environmental remediation. Curr. Anal. Chem. 16, 1–11 (2020)

    Article  Google Scholar 

  35. H. Baksh et al., Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid. Monatshefte für Chemie-Chemical Monthly 1–8 (2020)

  36. H.-T. Wang et al., p-Type dye-sensitized solar cell based on nickel oxide photocathode with or without Li doping. J. Alloy. Compd. 584, 142–147 (2014)

    Article  CAS  Google Scholar 

  37. M. Miraki et al., Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq. 278, 672–676 (2019)

    Article  CAS  Google Scholar 

  38. Z. Amani-Beni, A. Nezamzadeh-Ejhieh, NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal. Chim. Acta 1031, 47–59 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. Y.G. Morozov, O. Belousova, M. Kuznetsov, Preparation of nickel nanoparticles for catalytic applications. Inorg. Mater. 47(1), 36–40 (2011)

    Article  CAS  Google Scholar 

  40. H. Karimi-Maleh et al., Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron. 86, 879–884 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. H. Karimi-Maleh et al., Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec. 20(7), 682–692 (2020)

    Article  CAS  PubMed  Google Scholar 

  42. V. Arabali, S. Malekmohammadi, F. Karimi, Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nanocomposite; A powerful electrochemical strategy for determination of tramadol. Microchem. J. 158, 105179 (2020)

    Article  CAS  Google Scholar 

  43. Y. Bow et al., Molecularly Imprinted Polymers (MIP) based electrochemical sensors for detection of endosulfan pesticide. Development 17, 18 (2017)

    Google Scholar 

  44. S.S. Rathnakumar et al., Stalling behaviour of chloride ions: a non-enzymatic electrochemical detection of α-Endosulfan using CuO interface. Sens. Actuators B 293, 100–106 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Higher Education Commission of Pakistan for providing funds under the Project “6714/Sindh/NRPU/R&D/HEC/HEC/2015”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber R. Solangi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhsh, H., Buledi, J.A., Khand, N.H. et al. NiO nanostructures based functional none-enzymatic electrochemical sensor for ultrasensitive determination of endosulfan in vegetables. Food Measure 15, 2695–2704 (2021). https://doi.org/10.1007/s11694-021-00860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00860-7

Keywords

Navigation