Skip to main content
Log in

Cetyltrimethylammonium bromide (CTAB) functionalization of sodium silicate from rice husks ash for Naphthol Green B and Congo Red adsorption

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The present work investigates the potential use of sodium silicate generated from rice husk ash and functionalized with cetyltrimethylammonium bromide (CTAB), for adsorption of Congo Red (CR) and Naphthol Green B (NGB) from aqueous solutions. The adsorption capacity of raw rice husk, calcinated rice husk (673, 873, 1073, and 1273 K), and functionalized sodium silicate were investigated. They were characterized by SEM, FTIR, TGA–DSC, and zeta potential analysis. The results showed that sodium silicate adsorption capacity and the functionalization effect were maximum at 873 K. The optimum adsorption conditions for CR and NGB onto Na2SiO3-CTAB adsorbent are as follows: contact time 30 min, pH 6, adsorbent dosage of 0.1 g, temperature 303 K, and initial dye concentration of 50 mg/L and 150 mg/L for NGB and CR, respectively. The maximum adsorption capacities for CR and NGB were recorded at 73.04 and 86.59 mg/g at 303 K, respectively. The pseudo-first-order kinetic model described well the adsorption of these dyes. However, Freundlich and Liu isotherm models described well the adsorption of NGB and CR, respectively. According to thermodynamic parameters, these adsorptions were endothermic and involved physical processes. Desorption capacities of 96.21% (for CR) and 92.21% (for NGB) were reached using 50% acetone solution. A maximum of four adsorption/desorption cycles was carried out. Thus, it can be concluded that sodium silicate modified with CTAB after calcination at 873 K is a potential low-cost adsorbent and renewable sorbent for the removal of dyes from industrial wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. N.R. Palapa, T. Normah, R. Taher, A. Mohadi, A. Lesbani. Rachmat, Effectivity of Indonesian rice husk as an adsorbent for removing Congo red from aqueous solutions. Environ. Nat. Resour. J. 19, 255–265 (2021). https://doi.org/10.32526/ennrj/19/2020232

    Article  Google Scholar 

  2. S. Kumar, P. Sangwan, R.M.V. Dhankhar, S. Bidra, Utilization of rice husk and their ash: a review. Res. J. Chem. Environ. Sci. 1(5),  126–129 (2013)

  3. E. Kiefer, L. Sigg, P. Schosseler, Chemical and spectroscopic characterization of algae surfaces. Environ. Sci. Technol. 31, 759–764 (1997). https://doi.org/10.1021/es960415d

    Article  CAS  Google Scholar 

  4. R. Riahi-Madvaar, M.A. Taher, H. Fazelirad, Synthesis and characterization of magnetic halloysite-iron oxide nanocomposite and its application for naphthol green B removal. Appl. Clay Sci. 137, 101–106 (2017). https://doi.org/10.1016/j.clay.2016.12.019

    Article  CAS  Google Scholar 

  5. C. Bamroongwongdee, S. Suwannee, M. Kongsomsaksiri, Adsorption of Congo red from aqueous solution by surfactant-modified rice husk: kinetic, isotherm and thermodynamic analysis, Songklanakarin. J. Sci. Technol. 41, 1076–1083 (2019). https://doi.org/10.14456/sjst-psu.2019.135

    Article  CAS  Google Scholar 

  6. Z. Bouberka, S. Kacha, M. Kameche, S. Elmaleh, Z. Derriche, Sorption study of an acid dye from an aqueous solutions using modified clays. J. Hazard. Mater. 119, 117–124 (2005). https://doi.org/10.1016/j.jhazmat.2004.11.026

    Article  CAS  PubMed  Google Scholar 

  7. K.D. Belaid, S. Kacha, Study of the kinetics and thermodynamics of the adsorption of a basic dye on sawdust. Rev. Des Sci. l’Eau. 24, 131–144 (2011). https://doi.org/10.7202/1006107ar

    Article  CAS  Google Scholar 

  8. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 273, 425–434 (2019). https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  9. V.H. Le, C.N.H. Thuc, H.H. Thuc, Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res. Lett. 8, 1–10 (2013). https://doi.org/10.1186/1556-276x-8-58

    Article  Google Scholar 

  10. J.M. Kepdieu, C.N. Djangang, J.R. Njimou, S.A. Maicaneanu, J.R. Mache, G. Tchanang, Low-cost pathways to synthesize silica-smectite clay-based composites. Silicon. 15(17), 7345–7356 (2023). https://doi.org/10.21203/rs.3.rs-2452721/v1

  11. L. Xiong, E.H. Sekiya, S. Wada, K. Saito, Facile catalytic combustion of rice husk and burning temperature dependence of the ashes. ACS Appl. Mater. Interfaces 1, 2509–2518 (2009). https://doi.org/10.1021/am9004623

    Article  CAS  PubMed  Google Scholar 

  12. M.C.D. Dominic, P.M.S. Begum, R. Joseph, D. Joseph, P. Kumar, E.P. Ayswarya, Synthesis, characterization and application of rice husk nanosilica in natural rubber. Int. J. Sci. Environ. Technol. 2, 1027–1035 (2013)

    Google Scholar 

  13. M.O. Aremu, A.O. Arinkoola, I.A. Olowonyo, K.K. Salam, Improved phenol sequestration from aqueous solution using silver nanoparticle modified Palm Kernel Shell Activated Carbon. Heliyon. 6, e04492 (2020). https://doi.org/10.1016/j.heliyon.2020.e04492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O.H. Lin, T.G. Yee, N.A.N.N. Azza, M.M. Safwan, A.R. Villagracia, C.K. Mern, M.M.A.B. Abdullah, Utilization of modified palm kernel shell for biocomposites production. Key Eng. Mater. 700, 60–69 (2016). https://doi.org/10.4028/www.scientific.net/KEM.700.60

    Article  Google Scholar 

  15. A.K. Chowdhury, A.D. Sarkar, A. Bandyopadhyay, Rice husk ash as a low cost adsorbent for the removal of Methylene Blue and Congo Red in aqueous phases. Clean - Soil, Air, Water. 37, 581–591 (2009). https://doi.org/10.1002/clen.200900051

    Article  CAS  Google Scholar 

  16. M.C.D. Ngaha, E. Njanja, G. Doungmo, A. Tamo Kamdem, I.K. Tonle, Indigo carmine and 2,6-dichlorophenolindophenol removal using cetyltrimethylammonium bromide-modified palm oil fiber: adsorption isotherms and mass transfer kinetics, Int. J. Biomater. 2019 (2019). https://doi.org/10.1155/2019/6862825.

  17. K. Farooque, M. Zaman, E. Halim, S. Islam, M. Hossain, Y. Mollah, A. Mahmood, Characterization and utilization of rice husk ash (RHA) from rice mill of Bangladesh, Bangladesh. J. Sci. Ind. Res. 44, 157–162 (1970). https://doi.org/10.3329/bjsir.v44i2.3666

    Article  Google Scholar 

  18. X. Liu, J. Jiang, H. Zhang, M. Li, Y. Wu, L. Guo, W. Wang, P. Duan, W. Zhang, Z. Zhang, Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash. Appl. Clay Sci. 196, 105769 (2020). https://doi.org/10.1016/j.clay.2020.105769

    Article  CAS  Google Scholar 

  19. F. Adam, S. Balakrishnan, P.-L. Wong, Rice husk ash silica as a support material for ruthenium based heterogenous catalyst. J. Phys. Sci. 17, 1–13 (2006)

    CAS  Google Scholar 

  20. W.A.P.J. Premaratne, W.M.G.I. Priyadarshana, S.H.P. Gunawardena, A.A.P. De Alwis, Synthesis of nanosilica from paddy husk ash and their surface functionalization. J. Sci. Univ. Kelaniya Sri Lanka. 8, 33 (2014). https://doi.org/10.4038/josuk.v8i0.7238

    Article  Google Scholar 

  21. M.A. Zenasni, B. Meroufel, A. Merlin, B. George, Adsorption of Congo Red from aqueous solution using CTAB-Kaolin from Bechar Algeria. J. Surf. Eng. Mater. Adv. Technol. 04, 332–341 (2014). https://doi.org/10.4236/jsemat.2014.46037

    Article  Google Scholar 

  22. J. Goworek, A. Kierys, W. Gac, A. Borówka, R. Kusak, Thermal degradation of CTAB in as-synthesized MCM-41. J. Therm. Anal. Calorim. 96, 375–382 (2009). https://doi.org/10.1007/s10973-008-9055-6

    Article  CAS  Google Scholar 

  23. S.E. Rizk, M.M. Hamed, Batch sorption of iron complex dye, naphthol green B, from wastewater on charcoal, kaolinite, and Tafla. Desalin. Water Treat. 56, 1536–1546 (2015). https://doi.org/10.1080/19443994.2014.954004

    Article  CAS  Google Scholar 

  24. Z. Zhang, L. Moghaddam, I.M. O’Hara, W.O.S. Doherty, Congo Red adsorption by ball-milled sugarcane bagasse. Chem. Eng. J. 178, 122–128 (2011). https://doi.org/10.1016/j.cej.2011.10.024

    Article  CAS  Google Scholar 

  25. S. Bhowmik, V. Chakraborty, P. Das, Batch adsorption of indigo carmine on activated carbon prepared from sawdust: a comparative study and optimization of operating conditions using Response Surface Methodology. Results Surf Interfaces. 3, 100011 (2021). https://doi.org/10.1016/j.rsurfi.2021.100011

    Article  Google Scholar 

  26. Y. Zhang, H. Xu, S. Ma, M. Chen, L. Tian, G. Gou, Y. Chen, A research on the removal characteristics of naphthol Green B from wastewater using nanomaterials nZVI/CS/APT. Phys. Chem. Liq. 60, 219–232 (2022). https://doi.org/10.1080/00319104.2021.1939344

    Article  CAS  Google Scholar 

  27. A.A. Ali, S.R. El-Sayed, S.A. Shama, T.Y. Mohamed, A.S. Amin, Fabrication and characterization of cerium oxide nanoparticles for the removal of naphthol green b dye. Desalin. Water Treat. 204, 124–135 (2020). https://doi.org/10.5004/dwt.2020.26245

    Article  CAS  Google Scholar 

  28. B. Acemioǧlu, Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. J. Colloid Interface Sci. 274, 371–379 (2004). https://doi.org/10.1016/j.jcis.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  29. D. Adamczyk, E. Bezak-Mazur, Adsorption Naphtol Green B on activated carbon F-300. Ecol. Chem. Eng. A 19, 1123–1131 (2012). https://doi.org/10.2428/ecea.2012.19(09)108

    Article  CAS  Google Scholar 

  30. A. Borhan, S. Yusup, J.W. Lim, P.L. Show, Characterization and modelling studies of activated carbon produced from rubber-seed shell using KOH for CO2 adsorption, Processes. 7 (2019). https://doi.org/10.3390/pr7110855.

  31. S. Dawood, T.K. Sen, Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 46, 1933–1946 (2012). https://doi.org/10.1016/j.watres.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  32. Z. Hu, H. Chen, F. Ji, S. Yuan, Removal of Congo Red from aqueous solution by cattail root. J. Hazard. Mater. 173, 292–297 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.082

    Article  CAS  PubMed  Google Scholar 

  33. M.F. Attallah, I.M. Ahmed, M.M. Hamed, Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent. Environ. Sci. Pollut. Res. 20, 1106–1116 (2013). https://doi.org/10.1007/s11356-012-0947-4

    Article  CAS  Google Scholar 

  34. A. Naphtali Odogu, K. Daouda, L. Paul Keilah, G. AgborTabi, L. Ngouateu Rene, N. Julius Nsami, K. JosophMbadcam, Effect of doping activated carbon based Ricinodendron Heudelotti shells with AgNPs on the adsorption of indigo carmine and its antibacterial properties. Arab. J. Chem. 13, 5241–5253 (2020). https://doi.org/10.1016/j.arabjc.2020.03.002

    Article  CAS  Google Scholar 

  35. Z. Harrache, M. Abbas, T. Aksil, M. Trari, Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchem. J. 144, 180–189 (2019). https://doi.org/10.1016/j.microc.2018.09.004

    Article  CAS  Google Scholar 

  36. R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of Congo red from aqueous solution in column mode. Bioresour. Technol. 99, 2938–2946 (2008). https://doi.org/10.1016/j.biortech.2007.06.027

    Article  CAS  PubMed  Google Scholar 

  37. N. Mahmud, A. Benamor, Magnetic iron oxide kaolinite nanocomposite for effective removal of Congo Red dye: adsorption, kinetics, and thermodynamics studies. Water Conserv. Sci. Eng. 8, 1–19 (2023). https://doi.org/10.1007/s41101-023-00207-x

    Article  Google Scholar 

  38. A.A. Aryee, R. Han, L. Qu, CTAB-modified peanut husk pre-treated with KMnO4 as an eco-friendly adsorbent for the uptake of Congo red in solution: adsorption and mechanism study, Environ. Sci. Pollut. Res. (2023) 1–14. https://doi.org/10.1007/s11356-023-31565-7.

  39. N. Ardhaoui, W. Sassi, R. Msaadi, N. Rouge, S. Ammar, A. Nafady, J.Y. Hihn, Adsorption and photocatalysis properties of perlite during oxytetracycline removal. Water Air Soil Pollut. 234, 1–13 (2023). https://doi.org/10.1007/s11270-023-06709-7

    Article  CAS  Google Scholar 

  40. M. Malhotra, S. Suresh, A. Garg, Tea waste derived activated carbon for the adsorption of sodium diclofenac from wastewater: adsorbent characteristics, adsorption isotherms, kinetics, and thermodynamics. Environ. Sci. Pollut. Res. 25, 32210–32220 (2018). https://doi.org/10.1007/s11356-018-3148-y

    Article  CAS  Google Scholar 

  41. G.Z. Kyzas, N.K. Lazaridis, A.C. Mitropoulos, Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach. Chem. Eng. J. 189–190, 148–159 (2012). https://doi.org/10.1016/j.cej.2012.02.045

    Article  CAS  Google Scholar 

  42. E. Njikam, S. Schiewer, Optimization and kinetic modeling of cadmium desorption from citrus peels: a process for biosorbent regeneration. J. Hazard. Mater. 213–214, 242–248 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.084

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by Coordination for the Improvement of Higher Education Personnel/CAPES (CAPES-PRINT Program). This work was financially supported by University of Rouen Normandy, INSA Rouen Normandy, the Centre National de la Recherche Scientifique (CNRS), European Regional Development Fund (ERDF), Labex SynOrg (ANR-11-LABX-0029), Carnot Institute I2C, the Graduate School for Research XL-Chem (ANR-18-EURE-0020 XL CHEM), the MOPG4 program (114722U), and Region Normandie.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Albert Mandjewil, Patrick Tsopbou Ngueagni, Ngoungoure Mandou Fadimatou, and Jean Mermoz Siewe. The first draft of the manuscript was written by Julien Vieillard, Guilherme Luiz Dotto, Emmanuel Djoufac Woumfo, and Patrick Nkuigue Fotsing, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Emmanuel Djoufac Woumfo or Patrick Tsopbou Ngueagni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadimatou, N.M., Fotsing, P.N., Mandjewil, A. et al. Cetyltrimethylammonium bromide (CTAB) functionalization of sodium silicate from rice husks ash for Naphthol Green B and Congo Red adsorption. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00655-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00655-8

Keywords

Navigation