Skip to main content
Log in

Chemically versus thermally reduced graphene oxide: effects of reduction methods and reducing agents on the adsorption of phenolic compounds from wastewater

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Graphene has recently emerged as an attractive material for various applications, including water decontamination. However, the pristine graphene oxide (GO) usually provides unsatisfactory adsorptive removal of water pollutants. GO reduction, whether chemically or thermally, has the potential to enhance its adsorption performance, particularly towards organic pollutants. Accordingly, the key aim of this study is to explore how the GO reduction method could alter its textural and chemical properties, and, thus, its capacity in removing phenolic pollutants from synthetic wastewater samples. To achieve this aim, GO was reduced chemically using hydrazine, aluminum foil, and metallic zinc powder, as well as thermally at 300, 500, and 800 ºC. The obtained graphene materials showed mixed performance. The chemically reduced GO using hydrazine (i.e., rGO-HD), aluminum foil (i.e., rGO-Al), and metallic zinc powder (labelled as rGO-Zn) showed a better adsorption performance towards bisphenol A (BPA) relative to the pristine GO. Additionally, BPA adsorption on rGO-HD and rGO-Al was comparable while its uptake capacity by rGO-Zn was about 50% lower. Thermal reduction of GO at 300 ºC (abbreviated as rGO-300) provided a marginal increase in BPA adsorption relative to the unmodified GO. Contrarily, GO reduction at 800 ºC (rGO-800) boosted the BPA saturation uptake capacity (i.e., qmax) from 53.1 (in the case of the pristine GO) to 193.5 mg/g. In addition to BPA, the adsorption of two other harmful phenolic pollutants (i.e., 2-nitrophenol and 2-chlorophenol) was investigated and the results showed that the respective adsorption of these pollutants on rGO-800 could reach 341.8 and 213.0 mg/g, which are about 8- and 7-fold, respectively, higher than their adsorption capacities on the unmodified GO. The adsorption of these phenolic pollutants does not follow any consistent correlation with the textural properties (i.e., BET surface area, pore volume, and pore size) of the synthesized graphene materials. Additionally, although GO reduction degree (measured by the C/O atomic ratio) plays an important role in the adsorption of phenolic pollutants on graphene materials, no further adsorption enhancement was observed when the C/O atomic ratio increased from about 5 up to 10. Interestingly, higher C/O atomic ratio had detrimental effect on adsorption. The approach adopted in this study revealed that the hazardous hydrazine, which is commonly used to reduce GO, can be replaced with a safer option (i.e., Al foil) without compromising the adsorption performance of the reduced GO. More importantly, the solvent-free (thermal) GO reduction could produce a superior (when conducted at 800 ºC) adsorbent than the ones obtained using the harmful chemical reduction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon request.

References

  1. J. Aravind Kumar, D. Joshua Amarnath, S. Anuradha Jabasingh, P. Senthil Kumar, K. Vijai Anand, G. Narendrakumar, S. Karthick Raja Namasivayam, T. Krithiga, S. Sunny, S. Purna Pushkala, D. Yuvarajan, One pot green synthesis of nano magnesium oxide-carbon composite: Preparation, characterization and application towards anthracene adsorption. J. Clean. Prod. 237, 117691 (2019). https://doi.org/10.1016/j.jclepro.2019.117691

    Article  CAS  Google Scholar 

  2. V.K. Gupta, D. Pathania, S. Agarwal, P. Singh, Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. J. Hazard. Mater. 243, 179–186 (2012). https://doi.org/10.1016/j.jhazmat.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  3. A.A. Basaleh, M.H. Al-Malack, T.A. Saleh, Methylene blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study. J. Environ. Chem. Eng. 7, 103107 (2019). https://doi.org/10.1016/j.jece.2019.103107

    Article  CAS  Google Scholar 

  4. N.D. Mu’azu, N. Jarrah, T.S. Kazeem, M. Zubair, M. Al-Harthi, Bentonite-layered double hydroxide composite for enhanced aqueous adsorption of Eriochrome Black T. Appl. Clay Sci. 161, 23–34 (2018). https://doi.org/10.1016/j.clay.2018.04.009

    Article  CAS  Google Scholar 

  5. G. Rathee, N. Singh, R. Chandra, Simultaneous elimination of dyes and antibiotic with a hydrothermally generated NiAlTi layered double hydroxide adsorbent. 2368–2377 (2020). https://doi.org/10.1021/acsomega.9b03785

  6. S.T. Ong, P.S. Keng, W.N. Lee, S.T. Ha, Y.T. Hung, Dye waste treatment. Water (Switzerland). 3, 157–176 (2011). https://doi.org/10.3390/w3010157

    Article  CAS  Google Scholar 

  7. M. Ejder-Korucu, A. Gürses, Ç. Dogar, S.K. Sharma, M. Açikyildiz, in Green Chem. Dye. Remov. from Waste Water Res. Trends Appl. Removal of Organic Dyes from Industrial Effluents: An Overview of Physical and Biotechnological Applications, (2015). https://doi.org/10.1002/9781118721001.ch1

  8. Z.F. Liu, G.M. Zeng, H. Zhong, X.Z. Yuan, H.Y. Fu, M.F. Zhou, X.L. Ma, H. Li, J.B. Li, Effect of dirhamnolipid on the removal of phenol catalyzed by laccase in aqueous solution. World J. Microbiol. Biotechnol. 28, 175–181 (2012). https://doi.org/10.1007/s11274-011-0806-3

    Article  CAS  PubMed  Google Scholar 

  9. Y. Zhang, Z. Zeng, G. Zeng, X. Liu, Z. Liu, M. Chen, L. Liu, J. Li, G. Xie, Effect of Triton X-100 on the removal of aqueous phenol by laccase analyzed with a combined approach of experiments and molecular docking. Colloids Surfaces B Biointerfaces. 97, 7–12 (2012). https://doi.org/10.1016/j.colsurfb.2012.04.001

  10. M. Alshabib, S.A. Onaizi, A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Sep. Purif. Technol. 219, 186–207 (2019). https://doi.org/10.1016/j.seppur.2019.03.028

    Article  CAS  Google Scholar 

  11. T. Application, R. Biosurfactants, P. Pollutants, C. Engineering, King Fahd University of Petroleum & Minerals The Application of Rhamnolipid Biosurfactants to Enhance the Laccase- mediated Degradation of Mixtures of Phenolic Pollutants in Wastewater A Thesis proposal submitted to the department of Chemical Engineering, (2021)

  12. S. Singh, R. Mishra, R.S. Sharma, V. Mishra, Phenol remediation by peroxidase from an invasive mesquite: Turning an environmental wound into wisdom. J. Hazard. Mater. 334, 201–211 (2017). https://doi.org/10.1016/j.jhazmat.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  13. A. Singla, Review of biological treatment solutions and role of nanoparticles in the treatment of wastewater generated by diverse industries. Nanotechnol. Environ. Eng. 7, 699–711 (2022). https://doi.org/10.1007/s41204-022-00267-9

    Article  CAS  Google Scholar 

  14. M. Kornaros, G. Lyberatos, Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J. Hazard. Mater. 136, 95–102 (2006). https://doi.org/10.1016/j.jhazmat.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  15. J. Zhang, S. Chen, Y. Zhang, X. Quan, H. Zhao, Y. Zhang, Reduction of acute toxicity and genotoxicity of dye effluent using Fenton-coagulation process. J. Hazard. Mater. 274, 198–204 (2014). https://doi.org/10.1016/j.jhazmat.2014.04.022

    Article  CAS  PubMed  Google Scholar 

  16. T.M. Subrahmanya, J. Widakdo, S. Mani, H.F.M. Austria, W.S. Hung, M. H K, J.K. Nagar, C.C. Hu, J.Y. Lai, An eco-friendlyand reusable syringe filter membrane for the efficient removal of dyes from water via low pressure filtration assisted self-assembling of graphene oxide and SBA-15/PDA. J. Clean. Prod. 349, 131425 (2022). https://doi.org/10.1016/j.jclepro.2022.131425

    Article  CAS  Google Scholar 

  17. M.O. Aijaz, M.R. Karim, N.M.A. Omar, M.H.D. Othman, M.A. Wahab, M. Akhtar Uzzaman, H.M. Alharbi, I. Wazeer, Recent progress, challenges, and opportunities of membrane distillation for heavy metals removal. Chem. Rec. 22(7), (2022). https://doi.org/10.1002/tcr.202100323

  18. F. Meierrieks, A. Pickl, M.W. Wolff, A robust and efficient alluvial filtration method for the clarification of adeno-associated viruses from crude cell lysates. J. Biotechnol. 367, 31–41 (2023). https://doi.org/10.1016/J.JBIOTEC.2023.03.010

    Article  CAS  PubMed  Google Scholar 

  19. S.K. Brar, N. Wangoo, R.K. Sharma, Enhanced and selective adsorption of cationic dyes using novel biocompatible self-assembled peptide fibrils. J. Environ. Manage. 255, 109804 (2020). https://doi.org/10.1016/j.jenvman.2019.109804

    Article  CAS  PubMed  Google Scholar 

  20. W.A. Li, Y.C. Peng, W. Ma, X.Y. Huang, M.L. Feng, Rapid and selective removal of Cs+ and Sr2+ ions by two zeolite-type sulfides via ion exchange method. Chem. Eng. J. 442, 136377 (2022). https://doi.org/10.1016/J.CEJ.2022.136377

    Article  CAS  Google Scholar 

  21. K. Suwannahong, C. Sirilamduan, A. Deepatana, T. Kreetachat, S. Wongcharee, Characterization and optimization of polymeric bispicolamine chelating resin: Performance evaluation via RSM using copper in acid liquors as a model substrate through ion exchange method. Molecules 27, 7210 (2022). https://doi.org/10.3390/molecules27217210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. W. Gao, P. Fatehi, Fly ash based adsorbent for treating bleaching effluent of kraft pulping process. Sep. Purif. Technol. 195, 60–69 (2018). https://doi.org/10.1016/j.seppur.2017.12.002

    Article  CAS  Google Scholar 

  23. G. Li, Q. Xu, X. Jin, R. Li, R. Dharmarajan, Z. Chen, Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI. Sep. Purif. Technol. 197, 401–406 (2018). https://doi.org/10.1016/j.seppur.2018.01.032

    Article  CAS  Google Scholar 

  24. K.A. Tan, N. Morad, T.T. Teng, I. Norli, P. Panneerselvam, Removal of cationic dye by magnetic nanoparticle (Fe3O4) impregnated onto activated maize cob powder and kinetic study of dye waste adsorption. APCBEE Proc. 1, 83–89 (2012). https://doi.org/10.1016/j.apcbee.2012.03.015

    Article  CAS  Google Scholar 

  25. A.A. Al-Gheethi, Q.M. Azhar, P. Senthil Kumar, A.A. Yusuf, A.K. Al-Buriahi, R.M.S. Radin Mohamed, M.M. Al-shaibani, Sustainable approaches for removing rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere. 287, 132080 (2022). https://doi.org/10.1016/j.chemosphere.2021.132080

    Article  CAS  PubMed  Google Scholar 

  26. U.M. Ismail, S.A. Onaizi, M.S. Vohra, Aqueous Pb(II) removal using ZIF-60: Adsorption studies. Response Surface Methodology and Machine Learning Predictions, Nanomaterials. 13, 1402 (2023). https://doi.org/10.3390/nano13081402

    Article  CAS  PubMed  Google Scholar 

  27. I. Ali, Z.A. Alothman, A. Alwarthan, Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: Kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017). https://doi.org/10.1016/j.molliq.2017.04.028

    Article  CAS  Google Scholar 

  28. S.A. Ganiyu, M.A. Suleiman, W.A. Al-Amrani, A.K. Usman, S.A. Onaizi, Adsorptive removal of organic pollutants from contaminated waters using zeolitic imidazolate framework composites: A comprehensive and up-to-date review. Sep. Purif. Technol. 318, 123765 (2023). https://doi.org/10.1016/J.SEPPUR.2023.123765

    Article  CAS  Google Scholar 

  29. B. Pan, B. Pan, W. Zhang, L. Lv, Q. Zhang, S. Zheng, Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 151, 19–29 (2009). https://doi.org/10.1016/j.cej.2009.02.036

    Article  CAS  Google Scholar 

  30. S.A. Onaizi, Simultaneous mercury removal from wastewater and hydrogen sulfide scavenging from sour natural gas using a single unit operation. J. Clean. Prod. 380, 134900 (2022). https://doi.org/10.1016/J.JCLEPRO.2022.134900

    Article  CAS  Google Scholar 

  31. F. Asghar, B. Shakoor, S. Fatima, S. Munir, H. Razzaq, S. Naheed, I.S. Butler, Fabrication and prospective applications of graphene oxide-modified nanocomposites for wastewater remediation. RSC Adv. 12, 11750–11768 (2022). https://doi.org/10.1039/d2ra00271j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D.R. Rout, H.M. Jena, O. Baigenzhenov, A. Hosseini-Bandegharaei, Graphene-based materials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. Sci. Total Environ. 863, 160871 (2023). https://doi.org/10.1016/J.SCITOTENV.2022.160871

    Article  CAS  PubMed  Google Scholar 

  33. Y. Wu, H. Ye, C. You, W. Zhou, J. Chen, W. Xiao, Z.N. Garba, L. Wang, Z. Yuan, Construction of functionalized graphene separation membranes and their latest progress in water purification. Sep. Purif. Technol. 285, 120301 (2022). https://doi.org/10.1016/J.SEPPUR.2021.120301

    Article  CAS  Google Scholar 

  34. Y. Li, Q. Du, T. Liu, J. Sun, Y. Jiao, Y. Xia, L. Xia, Z. Wang, W. Zhang, K. Wang, H. Zhu, D. Wu, Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater. Res. Bull. 47, 1898–1904 (2012). https://doi.org/10.1016/j.materresbull.2012.04.021

    Article  CAS  Google Scholar 

  35. L. Yu, X. Wu, Q. Liu, L. Liu, X. Jiang, J. Yu, C. Feng, M. Zhong, Removal of phenols from aqueous solutions by graphene oxide nanosheet suspensions. J. Nanosci. Nanotechnol. 16, 12426–12432 (2016). https://doi.org/10.1166/jnn.2016.12974

    Article  CAS  Google Scholar 

  36. A.A.Q. Al-qadri, Q.A. Drmosh, S.A. Onaizi, Case studies in chemical and environmental engineering enhancement of bisphenol a removal from wastewater via the covalent functionalization of graphene oxide with short amine molecules. Case Stud. Chem. Environ. Eng. 6, 100233 (2022). https://doi.org/10.1016/j.cscee.2022.100233

    Article  CAS  Google Scholar 

  37. X. Wang, Y. Hu, J. Min, S. Li, X. Deng, S. Yuan, X. Zuo, Adsorption characteristics of phenolic compounds on graphene oxide and reduced graphene oxide: A batch experiment combined theory calculation. Appl. Sci. 8, 1950 (2018). https://doi.org/10.3390/app8101950

    Article  CAS  Google Scholar 

  38. J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir. 28, 8418–8425 (2012). https://doi.org/10.1021/la301476p

    Article  CAS  PubMed  Google Scholar 

  39. S. Bele, V. Samanidou, E. Deliyanni, Effect of the reduction degree of graphene oxide on the adsorption of Bisphenol A. Chem. Eng. Res. Des. 109, 573–585 (2016). https://doi.org/10.1016/j.cherd.2016.03.002

    Article  CAS  Google Scholar 

  40. P. Number, Hydrazine solution 1–13, 2023 (1907)

    Google Scholar 

  41. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano. 4, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  42. N. Wang, G. Lv, L. He, X. Sun, New insight into photodegradation mechanisms, kinetics and health effects of p-nitrophenol by ozonation in polluted water. J. Hazard. Mater. 403, 123805 (2021). https://doi.org/10.1016/J.JHAZMAT.2020.123805

    Article  CAS  PubMed  Google Scholar 

  43. X. Wang, C. Karaman, Y. Zhang, C. Xia, Graphene oxide/cellulose nanofibril composite: A high-performance catalyst for the fabrication of an electrochemical sensor for quantification of p-nitrophenol, a hazardous water pollutant. Chemosphere. 331, 138813 (2023). https://doi.org/10.1016/J.CHEMOSPHERE.2023.138813

    Article  CAS  PubMed  Google Scholar 

  44. T. Liu, K. Cui, Y. Chen, C. Li, M. Cui, H. Yao, Y. Chen, S. Wang, Removal of chlorophenols in the aquatic environment by activation of peroxymonosulfate with nMnOx@Biochar hybrid composites: Performance and mechanism. Chemosphere. 283, 131188 (2021). https://doi.org/10.1016/J.CHEMOSPHERE.2021.131188

    Article  CAS  PubMed  Google Scholar 

  45. V.E. Sathishkumar, A.G. Ramu, J. Cho, Machine learning algorithms to predict the catalytic reduction performance of ecotoxic nitrophenols and azo dyes contaminants (Invited Article). Alexandria Eng. J. 72, 673–693 (2023). https://doi.org/10.1016/J.AEJ.2023.04.007

    Article  Google Scholar 

  46. A.M. Alkadhem, M.A.A. Elgzoly, A. Alshami, S.A. Onaizi, Kinetics of CO2 capture by novel amine-functionalized magnesium oxide adsorbents. Colloids Surfaces A Physicochem. Eng. Asp. 616, 126258 (2021). https://doi.org/10.1016/J.COLSURFA.2021.126258

    Article  CAS  Google Scholar 

  47. A.M. Alkadhem, M.A.A. Elgzoly, S.A. Onaizi, Novel amine-functionalized magnesium oxide adsorbents for CO2 capture at ambient conditions. J. Environ. Chem. Eng. 8, 103968 (2020). https://doi.org/10.1016/J.JECE.2020.103968

    Article  CAS  Google Scholar 

  48. S. Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, G. Palmisano, (Photo)catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV–Vis, photoluminescence, and electrochemical characterizations. Heterog. Photocatal. Relationships with Heterog. Catal. Perspect. 87–152 (2019). https://doi.org/10.1016/B978-0-444-64015-4.00004-3.

  49. S. Ismadji, D.S. Tong, F.E. Soetaredjo, A. Ayucitra, W.H. Yu, C.H. Zhou, Bentonite hydrochar composite for removal of ammonium from Koi fish tank. Appl. Clay Sci. 119, 146–154 (2016). https://doi.org/10.1016/j.clay.2015.08.022

    Article  CAS  Google Scholar 

  50. V. Paranthaman, K. Sundaramoorthy, B. Chandra, S.P. Muthu, P. Alagarsamy, R. Perumalsamy, Investigation on the performance of reduced graphene oxide as counter electrode in dye sensitized solar cell applications. Phys. Status Solidi Appl. Mater. Sci. 215(18), 1800298 (2018). https://doi.org/10.1002/pssa.201800298

    Article  CAS  Google Scholar 

  51. X. Hou, Y. Zheng, X. Ma, Y. Liu, Z. Ma, The effects of hydrophobicity and textural properties on hexamethyldisiloxane adsorption in reduced graphene oxide aerogels. Molecules. 26(4), 1130 (2021). https://doi.org/10.3390/molecules26041130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. T. Kim, V.G. Parale, H.N.R. Jung, Y. Kim, Z. Driss, D. Driss, A. Bouabidi, S. Euchy, H.H. Park, Facile synthesis of SnO 2 aerogel/reduced graphene oxide nanocomposites via in situ annealing for the photocatalytic degradation of methyl orange. Nanomaterials. 9(3), 358 (2019). https://doi.org/10.3390/nano9030358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Prakash, S. Chandra, D. Bahadur, Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon N. Y. 50(11), 4209–4219 (2012). https://doi.org/10.1016/j.carbon.2012.05.002

    Article  CAS  Google Scholar 

  54. Y. Li, Q. Du, J. Wang, T. Liu, J. Sun, Y. Wang, Z. Wang, Y. Xia, L. Xia, Defluoridation from aqueous solution by manganese oxide coated graphene oxide. J. Fluor. Chem. 148, 67–73 (2013). https://doi.org/10.1016/j.jfluchem.2013.01.028

    Article  CAS  Google Scholar 

  55. M.D.P. Lavin-Lopez, A. Romero, J. Garrido, L. Sanchez-Silva, J.L. Valverde, Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Ind. Eng. Chem. Res. 55(50), 12836–12847 (2016). https://doi.org/10.1021/acs.iecr.6b03533

    Article  CAS  Google Scholar 

  56. M.P. Araújo, O.S.G.P. Soares, A.J.S. Fernandes, M.F.R. Pereira, C. Freire, Tuning the surface chemistry of graphene flakes: new strategies for selective oxidation. RSC Adv. 7, 14290–14301 (2017). https://doi.org/10.1039/c6ra28868e

    Article  CAS  Google Scholar 

  57. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon N. Y. 49, 3019–3023 (2011). https://doi.org/10.1016/j.carbon.2011.02.071

    Article  CAS  Google Scholar 

  58. N.M. Nguyen Huynh, Z.A. Boeva, J.H. Smått, M. Pesonen, T. Lindfors, Reduced graphene oxide as a water, carbon dioxide and oxygen barrier in plasticized poly(vinyl chloride) films. RSC Adv. 8, 17645–17655 (2018). https://doi.org/10.1039/c8ra03080d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. S.A. Lateef, O.O. Ajumobi, S.A. Onaizi, Enzymatic desulfurization of crude oil and its fractions: A mini review on the recent progresses and challenges. Arab. J. Sci. Eng. 44, 5181–5193 (2019). https://doi.org/10.1007/s13369-019-03800-2

    Article  CAS  Google Scholar 

  60. S.A. Onaizi, L. He, A.P.J. Middelberg, The construction, fouling and enzymatic cleaning of a textile dye surface. J. Colloid Interface Sci. 351, 203–209 (2010). https://doi.org/10.1016/J.JCIS.2010.07.030

    Article  CAS  PubMed  Google Scholar 

  61. S.A. Onaizi, L. He, A.P.J. Middelberg, Proteolytic cleaning of a surface-bound rubisco protein stain. Chem. Eng. Sci. 64, 3868–3878 (2009). https://doi.org/10.1016/j.ces.2009.05.027

    Article  CAS  Google Scholar 

  62. S.A. Onaizi, Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air–water interface. Eur. Biophys. J. 47, 631–640 (2018). https://doi.org/10.1007/s00249-018-1289-z

    Article  CAS  PubMed  Google Scholar 

  63. S.A. Onaizi, Demulsification of crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant using enzymes and pHswing. Sep. Purif. Technol. 259, 118060 (2021). https://doi.org/10.1016/J.SEPPUR.2020.118060

    Article  CAS  Google Scholar 

  64. S.A. Onaizi, M.S. Nasser, N.M.A. Al-Lagtah, Self-assembly of a surfactin nanolayer at solid–liquid and air–liquid interfaces. Eur. Biophys. J. 45, 331–339 (2016). https://doi.org/10.1007/s00249-015-1099-5

    Article  CAS  PubMed  Google Scholar 

  65. S.A. Onaizi, M.S. Nasser, N.M.A. Al-Lagtah, Benchmarking the self-assembly of surfactin biosurfactant at the liquid–air interface to those of synthetic surfactants. J. Surfactants Deterg. 19(3), 645–652 (2016). https://doi.org/10.1007/s11743-016-1796-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. M.K. Al-Sakkaf, S.A. Onaizi, Crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant: Effects of acidity/basicity and salinity on emulsion characteristics, stability, and demulsification. Fuel. 344, 128052 (2023). https://doi.org/10.1016/J.FUEL.2023.128052

    Article  CAS  Google Scholar 

  67. L. He, A.S. Malcolm, M. Dimitrijev, S.A. Onaizi, H.H. Shen, S.A. Holt, A.F. Dexter, R.K. Thomas, A.P.J. Middelberg, Cooperative tuneable interactions between a designed peptide biosurfactant and positional isomers of SDOBS at the air – water interface. Langmuir. 25(7), 4021–4026 (2009). https://doi.org/10.1021/la802825c

    Article  CAS  PubMed  Google Scholar 

  68. S.A. Onaizi, M. Alsulaimani, M.K. Al-Sakkaf, S.A. Bahadi, M. Mahmoud, A. Alshami, Crude oil/water nanoemulsions stabilized by biosurfactant: Stability and pH-switchability. J. Pet. Sci. Eng. 198, 108173 (2021). https://doi.org/10.1016/J.PETROL.2020.108173

    Article  CAS  Google Scholar 

  69. S.A. Onaizi, A.S. Malcolm, L. He, A.P.J. Middelberg, Directed disassembly of an interfacial rubisco protein network. Langmuir. 23(11), 6336–6341 (2007). https://doi.org/10.1021/la700378q

    Article  CAS  PubMed  Google Scholar 

  70. M.K. Al-Sakkaf, S.A. Onaizi, Rheology, characteristics, stability, and pH-responsiveness of biosurfactant-stabilized crude oil/water nanoemulsions. Fuel. 307, 121845 (2022). https://doi.org/10.1016/J.FUEL.2021.121845

    Article  CAS  Google Scholar 

  71. H.S. Almarouf, M.S. Nasser, M.J. Al-Marri, M. Khraisheh, S.A. Onaizi, Demulsification of stable emulsions from produced water using a phase separator with inclined parallel arc coalescing plates. J. Pet. Sci. Eng. 135, 16–21 (2015). https://doi.org/10.1016/J.PETROL.2015.08.005

    Article  CAS  Google Scholar 

  72. M. Alshabib, S.A. Onaizi, Effects of surface active additives on the enzymatic treatment of phenol and its derivatives: A mini review. Curr. Pollut. Reports. 5, 52–65 (2019). https://doi.org/10.1007/s40726-019-00105-8

    Article  CAS  Google Scholar 

  73. M. Alshabib, S.A. Onaizi, Enzymatic remediation of bisphenol A from wastewaters: Effects of biosurfactant, anionic, cationic, nonionic, and polymeric additives. Water. Air. Soil Pollut. 231, 428 (2020). https://doi.org/10.1007/s11270-020-04806-5

    Article  CAS  Google Scholar 

  74. S.A. Onaizi, M. Alshabib, The degradation of bisphenol A by laccase: Effect of biosurfactant addition on the reaction kinetics under various conditions. Sep. Purif. Technol. 257, 117785 (2021). https://doi.org/10.1016/J.SEPPUR.2020.117785

    Article  CAS  Google Scholar 

  75. A. Hezam, Q.A. Drmosh, D. Ponnamma, M.A. Bajiri, M. Qamar, K. Namratha, M. Zare, M.B. Nayan, S.A. Onaizi, K. Byrappa. Strategies to enhance ZnO photocatalyst’s performance for water treatment: A comprehensive review, Chem. Rec. 22(7), (2022). https://doi.org/10.1002/tcr.202100299

  76. S.A. Onaizi, Statistical analyses of the effect of rhamnolipid biosurfactant addition on the enzymatic removal of Bisphenol A from wastewater. Biocatal. Agric. Biotechnol. 32, 101929 (2021). https://doi.org/10.1016/J.BCAB.2021.101929

    Article  CAS  Google Scholar 

  77. S. Verma, R.K. Dutta, A facile method of synthesizing ammonia modified graphene oxide for efficient removal of uranyl ions from aqueous medium. RSC Adv. 5, 77192–77203 (2015). https://doi.org/10.1039/c5ra10555b

    Article  CAS  Google Scholar 

  78. Z. Sun, L. Zhao, C. Liu, Y. Zhen, W. Zhang, J. Ma, A novel 3D adsorbent of reduced graphene oxide-Β-cyclodextrin aerogel coupled hardness with softness for efficient removal of bisphenol A. Chem. Eng. J. 372, 896–904 (2019). https://doi.org/10.1016/j.cej.2019.04.217

    Article  CAS  Google Scholar 

  79. X. Wang, S. Huang, L. Zhu, X. Tian, S. Li, H. Tang, Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon N. Y. 69, 101–112 (2014). https://doi.org/10.1016/j.carbon.2013.11.070

    Article  CAS  Google Scholar 

  80. S. Yu, X. Wang, W. Yao, J. Wang, Y. Ji, Y. Ai, A. Alsaedi, T. Hayat, X. Wang, Macroscopic, spectroscopic, and theoretical investigation for the interaction of phenol and naphthol on reduced graphene oxide. Environ. Sci. Technol. 51, 3278–3286 (2017). https://doi.org/10.1021/acs.est.6b06259

    Article  CAS  PubMed  Google Scholar 

  81. J. Kwon, B. Lee, Bisphenol A adsorption using reduced graphene oxide prepared by physical and chemical reduction methods. Chem. Eng. Res. Des. 104, 519–529 (2015). https://doi.org/10.1016/j.cherd.2015.09.007

    Article  CAS  Google Scholar 

  82. J. Li, C.Y. Liu, Y. Liu, Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430 (2012). https://doi.org/10.1039/c2jm16386a

    Article  CAS  Google Scholar 

  83. W. Wang, Q. Gong, Z. Chen, W.D. Wang, Q. Huang, S. Song, J. Chen, X. Wang, Adsorption and competition investigation of phenolic compounds on the solid-liquid interface of three-dimensional foam-like graphene oxide. Chem. Eng. J. 378, 122085 (2019). https://doi.org/10.1016/j.cej.2019.122085

    Article  CAS  Google Scholar 

  84. Y. Zhang, Y. Cheng, N. Chen, Y. Zhou, B. Li, W. Gu, X. Shi, Y. Xian, Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: Adsorption and desorption. J. Colloid Interface Sci. 421, 85–92 (2014b). https://doi.org/10.1016/j.jcis.2014.01.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Research Oversight and Coordination (DROC) at King Fahd University of Petroleum and Minerals (KFUPM) in the terms of Research Grant #DF191022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagheer A. Onaizi.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadi, S.A., Iddrisu, M., Al-Sakkaf, M.K. et al. Chemically versus thermally reduced graphene oxide: effects of reduction methods and reducing agents on the adsorption of phenolic compounds from wastewater. emergent mater. 7, 533–545 (2024). https://doi.org/10.1007/s42247-023-00514-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00514-y

Keywords

Navigation