Skip to main content
Log in

Effects of Surface Active Additives on the Enzymatic Treatment of Phenol and Its Derivatives: a Mini Review

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Phenolic wastewaters represent a serious health and environmental problem. The remediation of phenolic wastewaters using oxidoreductase enzymes has emerged as an attractive environmentally friendly treatment method. However, the loss of enzyme activity during the treatment remains a key limitation. Thus, the aim of this article is to review and assess the recent progress in utilizing surface active additives (i.e., polymers, biopolymers, surfactants, and biosurfactants) for the reduction of enzyme inhibition and, thus, the enhancement of enzymatic remediation of phenolic wastewaters.

Recent Findings

The reported effect of polymeric and surfactant additives on the enzymatic remediation of phenolic pollutants is mixed. Some studies reported significant enhancements while others demonstrated minimal or no gains. More seriously, it has been reported that these fossil-based additives might lead to a higher toxicity of the treated wastewaters. Bio-based (biopolymers and biosurfactants) additives might address this toxicity issue; however, the bio-based additives are not always as effective as the fossil-based ones.

Summary

Despite the beneficial effect, with some exceptions, of additives, the enhancement level varies widely, probably due to the variations in the reaction environment. Thus, to draw meaningful and reliable conclusions on which additive(s) is more promising, thorough studies under unified conditions are needed. Additionally, generation of secondary pollutions associated with the fossil-based additives urges the replacement of such additives with bio-based ones. However, the effectiveness of the bio-based additives is still not sufficiently documented, stressing the need for more in-depth studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zhang Y, Zeng Z, Zeng G, Liu X, Liu Z, Chen M, et al. Effect of Triton X-100 on the removal of aqueous phenol by laccase analyzed with a combined approach of experiments and molecular docking. Colloids Surfaces B Biointerfaces. 2012;97:7–12.

    Article  CAS  Google Scholar 

  2. •• Liu ZF, Zeng GM, Zhong H, Yuan XZ, Fu HY, Zhou MF, et al. Effect of dirhamnolipid on the removal of phenol catalyzed by laccase in aqueous solution. World J Microbiol Biotechnol. 2012;28:175–81 This paper compares the effects of rahmnolipid, hexadecyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) on the enzymatic degrdation rate of phenol using laccase.

    Article  CAS  Google Scholar 

  3. Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N. A short review of techniques for phenol removal from wastewater. Curr Pollut Reports. 2016;2:157–67.

    Article  CAS  Google Scholar 

  4. Kurnik K, Treder K, Skorupa-Kłaput M, Tretyn A, Tyburski J. Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water Air Soil Pollut. 2015;226:254.

    Article  CAS  Google Scholar 

  5. Liu Y, Zeng Z, Zeng G, Tang L, Pang Y, Li Z, et al. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour Technol. 2012;115:21–6.

    Article  CAS  Google Scholar 

  6. vom Saal FS, Akingbemi BT, Belcher SM, et al. Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. 2007;24:131–8.

    Article  CAS  Google Scholar 

  7. vom Saal FS, Myers JP. Bisphenol A and risk of metabolic disorders. JAMA. 2008;300:1353–5.

    Article  Google Scholar 

  8. Slaga TJ, Bracken WM, Dresner S, Levin W, Yagi H, Jerina DM, et al. Skin tumor-initiating activities of the twelve isomerie phenols of benzo(a)pyrene1. Cancer Res. 1978;38:678–81.

    CAS  Google Scholar 

  9. Glatt HR, Oesch F. Phenolic benzo(a)pyrene metabolites are mutagens. Mutat Res Fundam Mol Mech Mutagen. 1976;36:379–83.

    Article  CAS  Google Scholar 

  10. Paisio CE, Agostini E, González PS, Bertuzzi ML. Lethal and teratogenic effects of phenol on Bufo arenarum embryos. J Hazard Mater. 2009;167:64–8.

    Article  CAS  Google Scholar 

  11. Pradeep NV, Anupama S, Navya K, Shalini HN, Idris M, Hampannavar US. Biological removal of phenol from wastewaters: a mini review. Appl Water Sci. 2015;5:105–12.

    Article  CAS  Google Scholar 

  12. Babich H, Davis DL. Phenol: a review of environmental and health risks. Regul Toxicol Pharmacol. 1981;1:90–109.

    Article  CAS  Google Scholar 

  13. Saha B, Taylor KE, Bewtra JK, Biswas N. Laccase-catalyzed removal of phenol and benzenediols from wastewater. J Hazard Toxic Radioact Waste. 2011;15:13–20.

    Article  CAS  Google Scholar 

  14. Steevensz A, Al-Ansari MM, Taylor KE, Bewtra JK, Biswas N. Oxidative coupling of various aromatic phenols and anilines in water using a laccase from Trametes villosa and insights into the “PEG effect”. J Chem Technol Biotechnol. 2012;87:21–32.

    Article  CAS  Google Scholar 

  15. Steevensz A, Madur S, Feng W, Taylor KE, Bewtra JK, Biswas N. Crude soybean hull peroxidase treatment of phenol in synthetic and real wastewater: enzyme economy enhanced by Triton X-100. Enzym Microb Technol. 2014;55:65–71.

    Article  CAS  Google Scholar 

  16. Singh S, Mishra R, Sharma RS, Mishra V. Phenol remediation by peroxidase from an invasive mesquite: turning an environmental wound into wisdom. J Hazard Mater. 2017;334:201–11.

    Article  CAS  Google Scholar 

  17. Chiong T, Lau SY, Khor EH, Danquah MK. Enzymatic approach to phenol removal from wastewater using peroxidases. OA Biotechnol. 2014;3:1–6.

    Google Scholar 

  18. Hussain A, Dubey SK, Kumar V. Kinetic study for aerobic treatment of phenolic wastewater. Water Resour Ind. 2015;11:81–90.

    Article  CAS  Google Scholar 

  19. Kazemi P, Peydayesh M, Bandegi A, Mohammadi T, Bakhtiari O. Stability and extraction study of phenolic wastewater treatment by supported liquid membrane using tributyl phosphate and sesame oil as liquid membrane. Chem Eng Res Des. 2014;92:375–83.

    Article  CAS  Google Scholar 

  20. Gao W, Fatehi P. Fly ash based adsorbent for treating bleaching effluent of kraft pulping process. Sep Purif Technol. 2018;195:60–9.

    Article  CAS  Google Scholar 

  21. Li G, Xu Q, Jin X, Li R, Dharmarajan R, Chen Z. Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI. Sep Purif Technol. 2018;197:401–6.

    Article  CAS  Google Scholar 

  22. Crini G, Lichtfouse E. Wastewater treatment: an overview. Cham: Springer; 2018. p. 1–21.

    Google Scholar 

  23. Jaradat AQ, Gharaibeh S, Abu Irjei M. The application of solar distillation technique as a mean for olive mill wastewater management. Water Environ J. 2018;32:134–40.

    Article  CAS  Google Scholar 

  24. González EJ, Díaz I, Gonzalez-Miquel M, Rodríguez M, Sueiras A. On the behavior of imidazolium versus pyrrolidinium ionic liquids as extractants of phenolic compounds from water: experimental and computational analysis. Sep Purif Technol. 2018;201:214–22.

    Article  CAS  Google Scholar 

  25. Asrami MR, Saien J. Salting-out effect on extraction of phenol from aqueous solutions by [Hmim][NTf2] ionic liquid: experimental investigations and modeling. Sep Purif Technol. 2018;204:175–84.

    Article  CAS  Google Scholar 

  26. Ouyang Z, Huang Z, Tang X, Xiong C, Tang M, Lu Y. A dually charged nanofiltration membrane by pH-responsive polydopamine for pharmaceuticals and personal care products removal. Sep Purif Technol. 2019;211:90–7.

    Article  CAS  Google Scholar 

  27. Zhang Y, Yu W, Li R, Xu Y, Shen L, Lin H, et al. Novel conductive membranes breaking through the selectivity-permeability trade-off for Congo red removal. Sep Purif Technol. 2019;211:368–76.

    Article  CAS  Google Scholar 

  28. Liu Z, Meng H, Zhang H, Cao J, Zhou K, Lian J. Highly efficient degradation of phenol wastewater by microwave induced H2O2-CuOx/GAC catalytic oxidation process. Sep Purif Technol. 2018;193:49–57.

    Article  CAS  Google Scholar 

  29. Loos G, Scheers T, Van Eyck K, Van Schepdael A, Adams E, Van der Bruggen B, et al. Electrochemical oxidation of key pharmaceuticals using a boron doped diamond electrode. Sep Purif Technol. 2018;195:184–91.

    Article  CAS  Google Scholar 

  30. Te LJC, Sopajaree K, Jitjanesuwan T, Lu MC. Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols. Sep Purif Technol. 2018;191:233–43.

    Article  CAS  Google Scholar 

  31. Nguyen DCT, Cho KY, Oh W-C. Mesoporous CuO-graphene coating of mesoporous TiO2 for enhanced visible-light photocatalytic activity of organic dyes. Sep Purif Technol. 2019;211:646–57.

    Article  CAS  Google Scholar 

  32. Onaizi SA, He L, Middelberg APJ. Proteolytic cleaning of a surface-bound rubisco protein stain. Chem Eng Sci. 2009;64:3868–78.

    Article  CAS  Google Scholar 

  33. Onaizi SA, He L, Middelberg APJ. Rapid screening of surfactant and biosurfactant surface cleaning performance. Colloids Surf B Biointerfaces. 2009;72:68–74.

    Article  CAS  Google Scholar 

  34. Onaizi SA, He L, Middelberg APJ. The construction, fouling and enzymatic cleaning of a textile dye surface. J Colloid Interface Sci. 2010;351:203–9.

    Article  CAS  Google Scholar 

  35. Upadhyay P, Shrivastava R, Agrawal PK. Bioprospecting and biotechnological applications of fungal laccase [Internet]. 3 Biotech. Springer; 2016. 1–12.

  36. Wang F, Hu Y, Guo C, Huang W, Liu CZ. Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour Technol. 2012;110:120–4.

    Article  CAS  Google Scholar 

  37. Mukherjee S, Basak B, Bhunia B, Dey A, Mondal B. Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater [Internet]. Rev Environ Sci Biotechnol. 2013;12:61–73.

    Article  CAS  Google Scholar 

  38. Ji G, Zhang H, Huang F, Huang X. Effects of nonionic surfactant Triton X-100 on the laccase-catalyzed conversion of bisphenol A. J Environ Sci. 2009;21:1486–90.

    Article  CAS  Google Scholar 

  39. Steevensz A, Villegas LGC, Feng W, Taylor KE, Bewtra JK, Biswas N. Soybean peroxidase for industrial wastewater treatment: a mini review. J Environ Eng Sci. 2014;9:181–6.

    Article  Google Scholar 

  40. Feng W, Taylor KE, Biswas N, Bewtra JK. Soybean peroxidase trapped in product precipitate during phenol polymerization retains activity and may be recycled. J Chem Technol Biotechnol. 2013;88:1429–35.

    Article  CAS  Google Scholar 

  41. Asif MB, Hai FI, Hou J, Price WE, Nghiem LD. Impact of wastewater derived dissolved interfering compounds on growth, enzymatic activity and trace organic contaminant removal of white rot fungi—a critical review. J Environ Manag. 2017;201:89–109.

    Article  CAS  Google Scholar 

  42. • Bratkovskaja I, Vidziunaite R, Kulys J. Oxidation of phenolic compounds by peroxidase in the presence of soluble polymers. Biochem. 2004;69:985–92 This article reports the effects of some polymeric additives on the degradation rate of some phenolic pollutants.

    CAS  Google Scholar 

  43. Modaressi K, Taylor KE, Bewtra JK, Biswas N. Laccase-catalyzed removal of bisphenol-A from water: protective effect of PEG on enzyme activity. Water Res. 2005;39:4309–16.

    Article  CAS  Google Scholar 

  44. Ghosh JP, Taylor KE, Bewtra JK, Biswas N. Laccase-catalyzed removal of 2,4-dimethylphenol from synthetic wastewater: effect of polyethylene glycol and dissolved oxygen. Chemosphere. 2008;71:1709–17.

    Article  CAS  Google Scholar 

  45. Kimura Y, Takahashi A, Kashiwada A, Yamada K. Removal of bisphenol A and its derivatives from aqueous medium through laccase-catalyzed treatment enhanced by addition of polyethylene glycol. Environ Technol (United Kingdom). 2016;37:1733–44.

    CAS  Google Scholar 

  46. • Kim YJ, Nicell JA. Laccase-catalyzed oxidation of bisphenol A with the aid of additives. Process Biochem. 2006;41:1029–37 This article demonstrates the laccase protection effects of some polymeric additives during the removal of bisphenol A from wastewater samples.

    Article  CAS  Google Scholar 

  47. • Steevensz A, Al-Ansari MM, Taylor KE, Bewtra JK, Biswas N. Comparison of soybean peroxidase with laccase in the removal of phenol from synthetic and refinery wastewater samples. J Chem Technol Biotechnol. 2009;84:761–9 This paper compares soybean with laccase in terms of phenol removal efficiency from both synthetic and real wastewater samples.

    Article  CAS  Google Scholar 

  48. Savić SR, Stojmenović SM, Petronijević MŽ, Petronijević ŽB. Phenol removal from aqueous solutions by peroxidase extracted from horseradish. Appl Biochem Microbiol. 2014;50:214–8.

    Article  CAS  Google Scholar 

  49. Yamada K, Ikeda N, Takano Y, Kashiwada A, Matsuda K, Hirata M. Determination of optimum process parameters for peroxidase-catalysed treatment of bisphenol A and application to the removal of bisphenol derivatives. Environ Technol. 2010;31:243–56.

    Article  CAS  Google Scholar 

  50. • Saitoh T, Asano K, Hiraide M. Polyallylamine-conjugated thermo-responsive polymers for the rapid removal of phenolic compounds from water. React Funct Polym. 2012;72:317–22 This articles discusses the utilization of thermoresponsive polymers as additives to improve the enzymatic degradation of some phenolic pollutants.

    Article  CAS  Google Scholar 

  51. Ashraf H, Husain Q. Removal of α-naphthol and other phenolic compounds from polluted water by white radish (Raphanus sativus) peroxidase in the presence of an additive, polyethylene glycol. Biotechnol Bioprocess Eng. 2009;14:536–42.

    Article  CAS  Google Scholar 

  52. Chang Q, Huang J, Ding Y, Tang H. Catalytic oxidation of phenol and 2,4-dichlorophenol by using horseradish peroxidase immobilized on graphene oxide/Fe3O4. Molecules. 2016;21:1044.

    Article  CAS  Google Scholar 

  53. González PS, Agostini E, Milrad SR. Comparison of the removal of 2,4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effect of polyethylene glycol. Chemosphere. 2008;70:982–9.

    Article  CAS  Google Scholar 

  54. Angelini VA, Agostini E, Medina MI, González PS. Use of hairy roots extracts for 2,4-DCP removal and toxicity evaluation by Lactuca sativa test. Environ Sci Pollut Res. 2014;21:2531–9.

    Article  CAS  Google Scholar 

  55. Deva AN, Arun C, Arthanareeswaran G, Sivashanmugam P. Extraction of peroxidase from waste Brassica oleracea used for the treatment of aqueous phenol in synthetic waste water. J Environ Chem Eng. 2014;2:1148–54.

    Article  CAS  Google Scholar 

  56. D’Annibale A, Stazi SR, Petruccioli M. Effect of additives on enzyme-catalyzed polymerization of phenols and aromatic amines. Front Biosci (Sch Ed). 2012;(4):1249–65.

  57. Nakamoto S, Machida N. Phenol removal from aqueous solutions by peroxidase-catalyzed reaction using additives. Water Res. 1992;26:49–54.

    Article  CAS  Google Scholar 

  58. Torres JA, Chagas PMB, Silva MC, dos Santos CD, Corrêa AD. Evaluation of the protective effect of chemical additives in the oxidation of phenolic compounds catalysed by peroxidase. Environ Technol. 2016;37:1288–95.

    Article  CAS  Google Scholar 

  59. Diao M, Ouédraogo N, Baba-Moussa L, Savadogo PW, N’Guessan AG, Bassolé IHN, et al. Biodepollution of wastewater containing phenolic compounds from leather industry by plant peroxidases. Biodegradation. 2011;22:389–96.

    Article  CAS  Google Scholar 

  60. Chiong T, Lau SY, Khor EH, Danquah MK. Peroxidase extraction from jicama skin peels for phenol removal. IOP Conf Ser Earth Environ Sci. 2016;36:012048.

    Article  Google Scholar 

  61. Ai J, Zhang W, Liao G, Xia H, Wang D. Immobilization of horseradish peroxidase enzymes on hydrous-titanium and application for phenol removal. RSC Adv. 2016;6:38117–23.

    Article  CAS  Google Scholar 

  62. Kurnik K, Treder K, Twarużek M, Grajewski J, Tretyn A, Tyburski J. Potato pulp as the peroxidase source for 2,4-dichlorophenol removal. Waste Biomass Valoriz. 2017:1–11.

  63. •• Kalaiarasan E, Palvannan T. Efficiency of carbohydrate additives on the stability of horseradish peroxidase (HRP): HRP-catalyzed removal of phenol and malachite green decolorization from wastewater. Clean Soil Air Water. 2015;43:846–56 This article reports the effect of biopolymeric additives (i.e., carbohydrates ) on the activity and stability of horseradish peroxidase during the enzymatic remediation of wastewater polluted with phenol and malachite green.

    Article  CAS  Google Scholar 

  64. Kalaiarasan E, Palvannan T. Removal of phenols from acidic environment by horseradish peroxidase (HRP): aqueous thermostabilization of HRP by polysaccharide additives. J Taiwan Inst Chem Eng. 2014;45:625–34.

    Article  CAS  Google Scholar 

  65. Li R, Wu Z, Wangb Y, Ding L, Wang Y. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol Reports. 2016;9:46–52.

    Article  Google Scholar 

  66. Ge S, Kojio K, Takahara A, Kajiyama T. Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: influence of the phase separation on protein adsorption patterns. J Biomater Sci Polym Ed. 1998;9:131–50.

    Article  CAS  Google Scholar 

  67. Vlasova IM, Saletsky AM. Study of the denaturation of human serum albumin by sodium dodecyl sulfate using the intrinsic fluorescence of albumin. J Appl Spectrosc. 2009;76:536–41.

    Article  CAS  Google Scholar 

  68. Wang F, Liu P, Nie T, Wei H, Cui Z. Characterization of a polyamine microsphere and its adsorption for protein. Int J Mol Sci. 2013;14:17–29.

    Article  CAS  Google Scholar 

  69. Wagner M, Nicell JA. Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res. 2002;36:4041–52.

    Article  CAS  Google Scholar 

  70. Ikehata K, Nicell JA. Color and toxicity removal following tyrosinase-catalyzed oxidation of phenols. Biotechnol Prog. 2000;16:533–40.

    Article  CAS  Google Scholar 

  71. Kulys J, Ivanec-Goranina R. Peroxidase catalyzed phenolic compounds oxidation in presence of surfactant Dynol 604: a kinetic investigation. Enzym Microb Technol. 2009;44:368–72.

    Article  CAS  Google Scholar 

  72. • Ruta IG, Juozas K. Effects of rhamnolipid biosurfactant JBR425 and synthetic surfactant Surfynol465 on the peroxidase-catalyzed oxidation of 2-naphthol. J Environ Sci (China). 2013;25:1431–40 This article compares the effectiveness of rhamnolipid and Surfynol 465 on the degradation rate of 2-naphthol using recombinant Coprinus cinereus peroxidase.

    Article  CAS  Google Scholar 

  73. Chhaya U, Gupte A. Possible role of laccase from fusarium incarnatum UC-14 in bioremediation of bisphenol A using reverse micelles system. J Hazard Mater. 2013;254–255:149–56.

    Article  CAS  Google Scholar 

  74. Zhang L, Zhao W, Ma Z, Nie G, Cui Y. Enzymatic polymerization of phenol catalyzed by horseradish peroxidase in aqueous micelle system. Eur Polym J. 2012;48:580–5.

    Article  CAS  Google Scholar 

  75. El Zeftawy MAM, Mulligan CN. Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF). Sep Purif Technol. 2011;77:120–7.

    Article  CAS  Google Scholar 

  76. Yuan XZ, Meng YT, Zeng GM, Fang YY, Shi JG. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids Surf A Physicochem Eng Asp. 2008;317:256–61.

    Article  CAS  Google Scholar 

  77. Zouboulis AI, Matis KA, Lazaridis NK, Golyshin PN. The use of biosurfactants in flotation: application for the removal of metal ions. Miner Eng. 2003;16:1231–6.

    Article  CAS  Google Scholar 

  78. Singh P, Jain R, Srivastava N, Borthakur A, Pal DB, Singh R, et al. Current and emerging trends in bioremediation of petrochemical waste: a review. Crit Rev Environ Sci Technol. 2017;47:155–201.

    Article  Google Scholar 

  79. Vijayakuma S, Saravanan V. Biosurfactants-types, sources and applications. Res J Microbiol. 2015;10:181–92.

    Article  CAS  Google Scholar 

  80. Zhou MF, Yuan XZ, Zhong H, Liu ZF, Li H, Jiang LL, et al. Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation. Appl Biochem Biotechnol. 2011;164:103–14.

    Article  CAS  Google Scholar 

  81. Maikudi Usman M, Dadrasnia A, Tzin Lim K, Fahim Mahmud A, Ismail S. Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioeng. 2016;3:289–304.

    Article  CAS  Google Scholar 

  82. Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133:183–98.

    Article  CAS  Google Scholar 

  83. He L, Malcolm AS, Dimitrijev M, Onaizi SA, Shen HH, Holt SA, et al. Cooperative tuneable interactions between a designed peptide biosurfactant and positional isomers of SDOBS at the air-water interface. Langmuir. 2009;25:4021–6.

    Article  CAS  Google Scholar 

  84. He L, Onaizi SA, Dimitrijev-Dwyer M, Malcolm AS, Shen H-H, Dong C, et al. Comparison of positional surfactant isomers for displacement of rubisco protein from the air–water interface. J Colloid Interface Sci. 2011;360:617–22.

    Article  CAS  Google Scholar 

  85. Onaizi SA, Nasser MS, Twaiq FA. Micellization and interfacial behavior of a synthetic surfactant-biosurfactant mixture. Colloids Surf A Physicochem Eng Asp. 2012;415:388–93.

    Article  CAS  Google Scholar 

  86. Onaizi SA, Nasser MS, Twaiq F. Adsorption and thermodynamics of biosurfactant, surfactin, monolayers at the air-buffered liquid interface. Colloid Polym Sci. 2014;292:1649–56.

    Article  CAS  Google Scholar 

  87. Onaizi SA, Nasser MS, Al-Lagtah NMA. Self-assembly of a surfactin nanolayer at solid–liquid and air–liquid interfaces. Eur Biophys J. 2016;45:331–9.

    Article  CAS  Google Scholar 

  88. Onaizi SA, Nasser MS, Al-Lagtah NMA. Benchmarking the self-assembly of surfactin biosurfactant at the liquid–air interface to those of synthetic surfactants. J Surfactant Deterg. 2016;19:645–52.

    Article  CAS  Google Scholar 

  89. Onaizi SA. Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air–water interface. Eur Biophys J. 2018;47:631–40.

    Article  CAS  Google Scholar 

  90. Mehta SK, Sharma S, Mehta N, Cameotra SS. Biomimetic amphiphiles: properties and potential use. Adv Exp Med Biol. 2010;672:102–20.

    Article  CAS  Google Scholar 

  91. Amani H, Sarrafzadeh MH, Haghighi M, Mehrnia MR. Comparative study of biosurfactant producing bacteria in MEOR applications. J Pet Sci Eng. 2010;75:209–14.

    Article  CAS  Google Scholar 

  92. Abouseoud M, Yataghene A, Amrane A, Maachi R. Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens. J Hazard Mater. 2010;180:131–6.

    Article  CAS  Google Scholar 

  93. Xia W-J, Dong H-P, Yu L, Yu D-F. Comparative study of biosurfactant produced by microorganisms isolated from formation water of petroleum reservoir. Colloids Surf A Physicochem Eng Asp. 2011;392:124–30.

    Article  CAS  Google Scholar 

  94. Tonegawa M, Dec J, Bollag J-M. Use of additives to enhance the removal of phenols from water treated with horseradish and hydrogen peroxide. J Environ Qual. 2003;32:1222.

    Article  CAS  Google Scholar 

  95. Otzen DE. Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochim Biophys Acta. 2017;1859:639–49.

    Article  CAS  Google Scholar 

  96. Liu XL, Zeng GM, Tang L, Zhong H, Wang RY, Fu HY, Liu ZF, Huang H li, Zhang JC. Effects of dirhamnolipid and SDS on enzyme production from Phanerochaete chrysosporium in submerged fermentation. Process Biochem 2008;43:1300–1303.

  97. Liu J, Yuan X, Zeng G, Shi J, Chen S. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem. 2006;41:2347–51.

    Article  CAS  Google Scholar 

  98. Jadhav M, Kalme S, Tamboli D, Govindwar S. Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol. 2011;51:385–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagheer A. Onaizi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshabib, M., Onaizi, S.A. Effects of Surface Active Additives on the Enzymatic Treatment of Phenol and Its Derivatives: a Mini Review. Curr Pollution Rep 5, 52–65 (2019). https://doi.org/10.1007/s40726-019-00105-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-019-00105-8

Keywords

Navigation