Skip to main content
Log in

Evaluation of bacterial cellulose/quince seed mucilage composite scaffold for wound dressing

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) and quince seed mucilage are very promising biological materials. In this study, we reported the design and fabrication of a novel biocompatible scaffold with excellent fibroblast cell proliferation, making it a promising composite scaffold for wound dressings. The composite scaffold was fabricated by ex situ modification of bacterial cellulose by quince seed mucilage. The products were investigated to determine their morphological features, chemical features, and thermal and swelling behaviors. Cell culture and proliferation tests were performed to obtain information on biocompatibility of the scaffolds. This work indicates the novel scaffold provides great potential in wound dressing for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.Y.X. Loh, N. Mohamad, M.B. Fauzi, M.H. Ng, S.F. Ng, M.C.I. Mohd Amin, Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep. 8, 1–12 (2018). https://doi.org/10.1038/s41598-018-21174-7

    Article  CAS  Google Scholar 

  2. S. Ye, L. Jiang, J. Wu, C. Su, C. Huang, X. Liu, W. Shao, Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces. 10, 5862–5870 (2018). https://doi.org/10.1021/acsami.7b16680

    Article  CAS  Google Scholar 

  3. M. Minaiyan, A. Ghannadi, M. Etemad, P. Mahzouni, A study of the effects of Cydonia oblonga Miller (quince) on TNBS-induced ulcerative colitis in rats. Res. Pharm. Sci. 7, 103–110 (2012). https://pdfs.semanticscholar.org/f714/50052bb74c71d57283d45d81dcc0c92044d2.pdf?_ga=2.168406690.202106262.1549234561-900931602.1546849390 (Accessed Feb 4, 2019)

  4. M. Jouki, S.A. Mortazavi, F.T. Yazdi, A. Koocheki, Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. Int. J. Biol. Macromol. 66, 113–124 (2014). https://doi.org/10.1016/j.ijbiomac.2014.02.026

    Article  CAS  Google Scholar 

  5. P. Tamri, A. Hemmati, M. Ghafourian, Wound healing properties of quince seed mucilage : in vivo evaluation in rabbit full-thickness wound model. Int. J. Surg. 12, 843–847 (2014). https://doi.org/10.1016/j.ijsu.2014.06.016

    Article  Google Scholar 

  6. M.M. Ahmed, G.A. Elmenoufy, 6- Quince polysaccharides induced apoptosis in human colon cancer cells (HCT-116). Res. Cancer Tumor 5, 1–9 (2016). https://doi.org/10.5923/j.rct.20160501.01

    Article  Google Scholar 

  7. R.M. Costa, A.S. Magalhães, J.A. Pereira, P.B. Andrade, P. Valentão, M. Carvalho, B.M. Silva, Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: a comparative study with green tea (Camellia sinensis). Food Chem. Toxicol. 47, 860–865 (2009). https://doi.org/10.1016/J.FCT.2009.01.019

    Article  CAS  Google Scholar 

  8. A.S. Magalhães, B.M. Silva, J.A. Pereira, P.B. Andrade, P. Valentão, M. Carvalho, Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food Chem. Toxicol. 47, 1372–1377 (2009). https://doi.org/10.1016/J.FCT.2009.03.017

    Article  Google Scholar 

  9. M.U. Ashraf, M.A. Hussain, S. Bashir, M.T. Haseeb, Z. Hussain, Quince seed hydrogel (glucuronoxylan): evaluation of stimuli responsive sustained release oral drug delivery system and biomedical properties. J. Drug. Deliv. Sci. Technol. 45, 455–465 (2018). https://doi.org/10.1016/j.jddst.2018.04.008

    Article  CAS  Google Scholar 

  10. M. Ghafourian, P. Tamri, A. Hemmati, Enhancement of human skin fibroblasts proliferation as a result of treating with quince seed mucilage, Jundishapur J Nat Pharm. Prod. 10, 10–13 (2015)

    Google Scholar 

  11. M. Jouki, S.A. Mortazavi, F.T. Yazdi, A. Koocheki, Characterization of antioxidant-antibacterial quince seed mucilage films containing thyme essential oil. Carbohydr. Polym. 99, 537–546 (2014). https://doi.org/10.1016/j.carbpol.2013.08.077

    Article  CAS  Google Scholar 

  12. V. Kanikireddy, K. Varaprasad, T. Jayaramudu, C. Karthikeyan, R. Sadiku, Carboxymethyl cellulose-based materials for infection control and wound healing: a review. Int. J. Biol. Macromol. 164, 963–975 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.160

    Article  CAS  Google Scholar 

  13. H. El-Saied, A.H. Basta, R.H. Gobran, Research progress in friendly environmental technology for the production of cellulose products (Bacterial cellulose and its application). Polym. – Plast. Technol. Eng. 43, 797–820 (2004). https://doi.org/10.1081/PPT-120038065

    Article  CAS  Google Scholar 

  14. S. Khan, M. Ul-Islam, M. Ikram, M.W. Ullah, M. Israr, F. Subhan, Y. Kim, J.H. Jang, S. Yoon, J.K. Park, Three-dimensionally microporous and highly biocompatible bacterial cellulose-gelatin composite scaffolds for tissue engineering applications. RSC Adv. 6, 110840–110849 (2016). https://doi.org/10.1039/C6RA18847H

    Article  CAS  Google Scholar 

  15. M. Ul-Islam, T. Khan, J.K. Park, Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 88, 596–603 (2012). https://doi.org/10.1016/j.carbpol.2012.01.006

    Article  CAS  Google Scholar 

  16. A. Azarniya, N. Eslahi, N. Mahmoudi, A. Simchi, Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites. Compos Part A Appl. Sci. Manuf. 85, 113–122 (2016). https://doi.org/10.1016/j.compositesa.2016.03.011

    Article  CAS  Google Scholar 

  17. Z. Cai, J. Kim, Preparation and characterization of novel bacterial cellulose/gelatin scaffold for tissue regeneration using bacterial cellulose hydrogel. J. Nanotechnol. Eng. Med. 1, 021002 (2010). https://doi.org/10.1115/1.4000858

    Article  CAS  Google Scholar 

  18. W.C. Lin, C.C. Lien, H.J. Yeh, C.M. Yu, S.H. Hsu, Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 94, 603–611 (2013). https://doi.org/10.1016/j.carbpol.2013.01.076

    Article  CAS  Google Scholar 

  19. M. Moniri, A. BoroumandMoghaddam, S. Azizi, R. Abdul Rahim, A. Bin Ariff, W. ZuhainisSaad, M. Navaderi, R. Mohamad, Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 7, 257 (2017)

    Article  Google Scholar 

  20. S. Khan, M. Ul-Islam, W.A. Khattak, M.W. Ullah, J.K. Park, Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22, 565–579 (2015). https://doi.org/10.1007/s10570-014-0528-4

    Article  CAS  Google Scholar 

  21. J. Kim, Z. Cai, H.S. Lee, G.S. Choi, D.H. Lee, C. Jo, Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J. Polym. Res. 18, 739–744 (2011). https://doi.org/10.1007/s10965-010-9470-9

    Article  CAS  Google Scholar 

  22. B. Fang, Y. Wan, T. Tang, C. Gao, K. Dai, Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/Bacterial. Tissue Eng. Part A 15, 1091–1099 (2009)

    Article  CAS  Google Scholar 

  23. E. Altun, M.O. Aydogdu, M. Crabbe-Mann, J. Ahmed, F. Brako, B. Karademir, B. Aksu, M. Sennaroglu, M.S. Eroglu, G. Ren, O. Gunduz, M. Edirisinghe, Co-culture of keratinocyte- Staphylococcus aureus on Cu-Ag-Zn/CuO and Cu-Ag-W nanoparticle loaded bacterial cellulose:PMMA bandages. Macromol. Mater. Eng. 304, 1800537 (2019). https://doi.org/10.1002/mame.201800537

    Article  CAS  Google Scholar 

  24. M.U. Ashraf, M.A. Hussain, G. Muhammad, M.T. Haseeb, S. Bashir, S.Z. Hussain, I. Hussain, A superporous and superabsorbent glucuronoxylan hydrogel from quince (Cydonia oblanga): stimuli responsive swelling, on-off switching and drug release. Int. J. Biol. Macromol. 95, 138–144 (2017). https://doi.org/10.1016/j.ijbiomac.2016.11.057

    Article  CAS  Google Scholar 

  25. H. Hosseinzadeh, S. Mohammadi, Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions. Carbohydr. Polym. 134, 213–221 (2015). https://doi.org/10.1016/j.carbpol.2015.08.008

    Article  CAS  Google Scholar 

  26. C. Ritzoulis, E. Marini, A. Aslanidou, N. Georgiadis, P.D. Karayannakidis, C. Koukiotis, A. Filotheou, S. Lousinian, E. Tzimpilis, Hydrocolloids from quince seed: extraction, characterization, and study of their emulsifying/stabilizing capacity. Food Hydrocoll. 42, 178–186 (2014). https://doi.org/10.1016/j.foodhyd.2014.03.031

    Article  CAS  Google Scholar 

  27. T.D. Lopes, I.C. Riegel-Vidotti, A. Grein, C.A. Tischer, P.C. de Sousa Faria-Tischer, Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int. J. Biol. Macromol. 67, 401–408 (2014). https://doi.org/10.1016/j.ijbiomac.2014.03.047

    Article  CAS  Google Scholar 

  28. H.S. Barud, C.A. Ribeiro, M.S. Crespi, M.A.U. Martines, J. Dexpert-Ghys, R.F.C. Marques, Y. Messaddeq, S.J.L. Ribeiro, Thermal characterization of bacterial cellulose – phosphate composite membranes. 87 815–818 (2007)

  29. S. Khan, M. Ul-Islam, M. Ikram, S.U. Islam, M.W. Ullah, M. Israr, J.H. Jang, S. Yoon, J.K. Park, Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: a potential material for skin regeneration applications in vitro and in vivo. Int. J. Biol. Macromol. 117, 1200–1210 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.044

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported and funded by Marmara University Scientific Researches Committee (BAPKO) (FEN-C-DRP-110718–0402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguzhan Gunduz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oran, D., Unal, S. & Gunduz, O. Evaluation of bacterial cellulose/quince seed mucilage composite scaffold for wound dressing. emergent mater. 5, 315–321 (2022). https://doi.org/10.1007/s42247-022-00352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00352-4

Keywords

Navigation