Abstract
Lightweight, flexible, and free-standing composite material for water purification has attracted a lot of interest recently. Renewable biomaterials such as green nanocomposites based on cellulose nanofibers (CNF) will play a major role in establishing the sustainability of water. Here, we have explained chemically modified CNFs with carboxylic surface functional groups by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) oxidation and chemically bonded nanocomposites based on modified CNFs with various metal pillars or metal–organic frameworks to create a robust and high-efficiency material for various environmental applications for water purification. The functionalization of CNFs proves to be an effective approach to control the porosity via the inter-fiber electrostatic interactions and to provide active functional groups for the chemical interaction with active components for the composite film formation. The flexible film thus produced was used for water purification and microbiological activity.
Graphical abstract

This is a preview of subscription content, access via your institution.











References
V. Gandhi, K. Shah, Advances in wastewater treatment I, (Materials Research Forum LLC, PA, USA, 2021).
Emerging Technologies for Wastewater Treatment and In-Plant Wet Weather Management (US EPA, 2013) <https://www.epa.gov/sites/production/files/2019-02/documents/emerging-tech-wastewater-treatment-management.pdf> (accessed 15 April, 2021).
M.S. Mauter, I. Zuker, F. Perreault, J.R. Werber, J.-H. Kim, M. Elimelech, Nat. Sustain. 1, 16–175 (2018). https://doi.org/10.1038/s41893-018-0046-8
H. Fuchs, T.J. Webster, Z. Tang, F. Banhart, ChemPhysChem 13, 2423–2425 (2012). https://doi.org/10.1002/cphc.201200444
A.A. Yaqoob, T. Praveen, K. Umar, M.N.M. Ibrahim, Water 12, 2 (2020). https://doi.org/10.3390/w12020495
A. Isogai, T. Saito, H. Fukuzumi, Nanoscale 3, 71–85 (2011). https://doi.org/10.1039/C0NR00583E
B. Joseph, S. Krishnan, V. K. Sagarika, A. Tharayil, N. Kalarikkal, S. Thomas, Emergent Mater. 3 (2020). https://doi.org/10.1007/s42247-020-00133-x
I. S. Chronakis, J. Mater. Process. Technol. 167 (2005). https://doi.org/10.1016/j.jmatprotec.2005.06.053.
Kenry, C. T. Lim, Prog. Polym. Sci. 70 (2017). https://doi.org/10.1016/j.progpolymsci.2017.03.002
A. Barhoum, K. Pal, H. Rahier, H. Uludag, I. S. Kim, M. Bechelany, Appl. Mater. Today 17 (2019). https://doi.org/10.1016/j.apmt.2019.06.015
T. Yao, H. Chen, P. Samal, S. Giselbrecht, M. B. Baker, L. Moroni, Materials & Design 168 (2019). https://doi.org/10.1016/j.matdes.2019.107614
D. Lombardo, P. Calandra, L. Pasqua, S. Magazu, Materials (basal) 13, 5 (2020). https://doi.org/10.3390/ma13051048
J. Zhao, W. Han, H. Chen, M. Tu, R. Zeng, Y. Shi, Z. Cha, C. Zhou, Carbohydr. Polym. 83, 1541–1546 (2011). https://doi.org/10.1016/j.carbpol.2010.10.009
I. Alghoraibi, S. Alomari, in Handbooks of nanofibers, ed. By A. Barhoum, M. Bechelany, A. Makhlouf (Springer, Cham, 2018), p-1–46.
D.J. Gardner, G.S. Oporto, R. Mills, M.A.S.A. Samir, J. Adhes. Sci. Technol. 22, 5 (2008). https://doi.org/10.1163/156856108X295509
Z. Yu, Y. Li, V. Bourg, M. Bilgen, J.C. Meredith, Emergent Mater. 3, 919–936 (2020). https://doi.org/10.1007/s42247-020-00147-5
R. Bendi, T. Imae, A.G. Destaye, Appl. Catal. A-Gen. 492, 184–189 (2015). https://doi.org/10.1016/j.apcata.2014.12.045
R. Bendi, T. Imae, RSC Adv. 3, 37 (2013). https://doi.org/10.1039/c3ra42689k
M. Wada, T. Okano, J. Sugiyama, Cellulose 4, 3 (1997). https://doi.org/10.1023/A:1018435806488
M. Wada, T. Okano, J. Sugiyama, J. Wood Sci. 47, 2 (2001). https://doi.org/10.1007/BF00780560
T. Goto, H. Harada, H. Saiki, Wood Sci. Technol. 12, 3 (1978). https://doi.org/10.1007/BF00372868
S. Youssefian, N. Rahbar, Scientific Report 5, 11116 (2015). https://doi.org/10.1038/srep11116
A. Kumar, S. P. Singh, A. K. Singh, Tappi Journal 13, 5 (2014). http://repository.iitr.ac.in/handle/123456789/13316. Accessed 29 May 2021
A. Sczostak, Macromol. Symp. (2009). https://doi.org/10.1002/masy.200950606
K. Missoum, M.N. Belgacem, J. Bras, Materials 6, 1745–1766 (2013). https://doi.org/10.3390/ma6051745
F. Vilarinho, A.S. Silva, M.F. Vaz, J.P. Farinha, Crit. Rev. Food Sci. Nutr. 58, 9 (2018). https://doi.org/10.1080/10408398.2016.1270254
A. Dufresne, Phil. Trans. R. Soc. A 376, 201 (2018). https://doi.org/10.1098/rsta.2017.0040
J. Moohan, S.A. Stewart, E. Espinosa, A. Rosal, A. Rodriguez, E. Larraneta, R.F. Donnelly, J.D. Robles, Appl. Sci. 10, 1 (2020). https://doi.org/10.3390/app10010065
K. Yoon, B.S. Hsiao, B. Chu, J. Mater. Chem. 44, 5326 (2008). https://doi.org/10.1039/B804128H
A.W. Carpenter, C.F. Lannoy, M.R. Wiesner, Environ. Sci. Technol. 49, 9 (2015). https://doi.org/10.1021/es506351r
V.V. Kadam, L. Wang, R. Padhye, J. Ind. Text. 47, 5326 (2016). https://doi.org/10.1177/1528083716676812
K.P.Y. Shak, Y.L. Pang, S.K. Mah, Beilstein J. Nanotechnol. 9, 2479–2498 (2018). https://doi.org/10.3762/bjnano.9.232
A. Barhoum, H. Li, M. Chen, L. Cheng, W. Yanng, A. Dufresne. in Handbooks of nanofibers, ed. by A. Barhoum, M. Bechelany, A. Makhlouf (Springer, Cham, 2019), p. 1131–56. https://doi.org/10.1007/978-3-319-53655-2_53
T. Saito, S. Kimura, Y. Nishuyama, A. Isogai, Biomacromol 8, 8 (2007). https://doi.org/10.1021/bm0703970
D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin, N. Brosse, M.H. Hussin, Front. Chem. 8, 392 (2020). https://doi.org/10.3389/fchem.2020.00392
K. Dhali, M. Ghasemlou, F. Daver, P. Cass, B. Adhikari, Sci. Tot. Environ. 775, 25 (2021). https://doi.org/10.1016/j.scitotenv.2021.145871
L.E. Wise, M. Murphy, D.A.A. Adieco, Paper Trade Journal 122, 2 (1946)
K.J. Shah, T. Imae, J. Mater Chem A. 20, 9691–9701 (2017). https://doi.org/10.1039/C7TA01861D
K.J. Shah, T. Imae, Biomacromolecule 17, 5 (2016). https://doi.org/10.1021/acs.biomac.6b00065
E. Corradini, L.C. de Morais, F.M. de Rosa, S.E. Mazzetto, L.H.C. Mattoso, J.A.M. Agnelli, Macromol. Symp. 245–246(1), 558–564 (2006). https://doi.org/10.1002/masy.200651380
M. Junior, V. Botaro, K. Novack, W.F. Neto, L. Mendes, G.H.D. Tonoli, J. Nanosci. Nanotechnol 15, 6751–6768 (2015). https://doi.org/10.1166/jnn.2015.10854
K. Oksman, Y. Aitomaki, A.P. Mathew, G. Siqueira, Q. Zhou, S. Butylina, S. Tanpichai, X. Zhou, S. Hooshmand, Composite Part A 83, 18 (2016). https://doi.org/10.1016/j.compositesa.2015.10.041
H. Mianehrow, G.L. Re, F. Carosio, A. Fina, P.T. Larsson, P. Chen, L.A. Berglund, J. Mater Chem A. 34, 17608–17620 (2020). https://doi.org/10.1039/D0TA04406G
M. Wakabayashi, S. Fujisawa, T. Saito, A. Isogai, Front. Chem. 8, 37 (2020). https://doi.org/10.3389/fchem.2020.00037
T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai, Biomacromol 10, 7 (2009). https://doi.org/10.1021/bm900414t
Y. Deng, Y. Cai, Z. Sun, J. Lia, C. Liu, J. Wei, Y. Wang, D. Zhao, J. Am. Chem. Soc. 132, 24 (2010). https://doi.org/10.1021/ja1025744
A. Manna, T. Imae, K. Aio, M. Okada, T. Yogo, Chem. Mater 13, 5 (2001). https://doi.org/10.1021/cm000416b
C. Anaa, J. Wang, W. Jiang, M. Zhang, X. Ming, S. Wang, Q. Zhang, Nanoscale 4, 18 (2012). https://doi.org/10.1039/C2NR31213A
Z.-J. Jiang, C.-Y. Liu, L.W. Sun, J. Phy. Chem. B 109, 5 (2005). https://doi.org/10.1021/jp046032g
K. J. Shah, T. Imae, A. Shukla, RSC Advances 5 (2015). https://doi.org/10.1039/x0xx00000x
L. Valencia, S. Kumar, E.M. Nomena, G.S. Alvarez, A.P. Mathew, A.C.S. Appl, Nano Mater. 3, 7 (2020). https://doi.org/10.1021/acsanm.0c01511
H. Xiao, Y. Shan, W. Zhang, L. Huang, L. Chen, Y. Nia, B. Boury, H. Wu, Carbo. Poly. 235, 115958 (2020). https://doi.org/10.1016/j.carbpol.2020.115958
H. Xiao, W. Zhang, Y. Wei, L. Chen, Cellulose 25, 1809–1819 (2018). https://doi.org/10.1007/s10570-018-1651-4
Y.B. Pottathara, V.N. Nawade, K.A. Bogle, V. Kokol, Polym. Bull. 77, 6175–6189 (2020). https://doi.org/10.1007/s00289-019-03077-3
A. Hussain, J. Li, J. Wang, F. Xue, Y. Chen, T.B. Aftab, D. Li, J. Nanomater. 2018, 1–12 (2018). https://doi.org/10.1155/2018/5963982
Z.A. Al-Ahmed, A.A. Hassan, S.M. El-Khouly, S.E. El-Shafey, Polym. Bull. 77, 6213–6226 (2020). https://doi.org/10.1007/s00289-019-03068-4
H. Ma, C. Burger, B.S. Haiao, B. Chu, Bio Macromolecules 13, 21 (2012). https://doi.org/10.1021/bm201421g
D.A. Gopakumar, V. Arumughan, D. Pasquini, S.-Y. Leu, A.H.P.S. Khalil, S. Thomas, Micro and Nano Technologies (2019). https://doi.org/10.1016/B978-0-12-813926-4.00004-5
C. Zhang, R.Z. Zhang, Y.Q. Ma, Q.B. Guan, X.L. Wu, X. Liu, H. Li, Y.L. Du, C.P. Pan, A.C.S. Sus, Chem. Eng. 3, 3 (2015). https://doi.org/10.1021/sc500738k
W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc 80, 6 (1958). https://doi.org/10.1021/ja01539a017
H. Zhao, J.H.Z. Kwak, C. Zhang, H.M. Brown, B.W. Arey, J.E. Holladay, Carbohydr. Polym. 68, 2 (2007). https://doi.org/10.1016/j.carbpol.2006.12.013
J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, A.C.S. Appl, Mater. Interfaces 4, 6 (2012). https://doi.org/10.1021/am300445f
W. Ouyang, J. Sun, J. Memon, C. Wang, J. Geng, Y. Huang, Carbon 62, 501–509 (2013). https://doi.org/10.1016/j.carbon.2013.06.049
Z. Zhang, X. Liu, W.G. Zheng, Carbohydr. Polym. 88, 26–30 (2012). https://doi.org/10.1016/j.carbpol.2011.11.054
G.K. Ramesha, A. Vijaya Kumara, H.B. Muralidhara, S. Sampath, J Colloid Interfece Sci 361(1), 270–277 (2011). https://doi.org/10.1016/j.jcis.2011.05.050
X. Liu, H. Zhang, Y. Ma, X. Wu, L. Meng, Y. Guo, G. Yu, Y. Liu, J. Mater. Chem. A a 5, 1875–1884 (2013). https://doi.org/10.1039/C2TA00173J
S.W. Hu, S. Chen, J. Agric. Food. Chem. 61, 36 (2013). https://doi.org/10.1021/jf4019118
O. Leenaerts, B. Patoens, F.M. Peeters, Macroelectronics Journal 40, 4 (2009). https://doi.org/10.1016/j.mejo.2008.11.022
C.-H. Huang, C.W. Tu, R.H. Lee, C.H. Yang, W.C. Hung, K.A. Lin, Polym. Degrad. Stab. 161, 206–212 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.01.023
M. Lucchini, E. Lizundia, S. Moser, M. Niederberger, G. Nystrom, A.C.S. Appl, Mater. Interfaces 10, 35 (2018). https://doi.org/10.1021/acsami.8b09735
M. Ujihara, M.H. Hsu, J.Y. Liou, T. Imae, J. Taiwan Inst. Chem. Eng. 92, 106–111 (2018). https://doi.org/10.1016/j.jtice.2018.02.003
X. Lu, T. Imae, J. Phys. Chem. C 111, 24 (2007). https://doi.org/10.1021/jp0702999
V. Esquivel-Pena, V. Guccini, S. Kumar, G. Salazara-Alvarez, E.R.S. Miguel, J. Gyves, RSC Adv. 21, 12460–12468 (2021). https://doi.org/10.1039/D0RA01528H
G. Wang, J. Xiang, J. Lin, L. Xiang, S. Chen, B. Yan, H. Fan, S. Zhang, X. Shi, A.C.S. Appl, Mater. Interfaces 12, 46 (2020). https://doi.org/10.1021/acsami.0c14820
G. Chen, K.J. Shah, L. Shi, P.C. Chiang, Z. You, Environ. Pollut. 254, 112964 (2019). https://doi.org/10.1016/j.envpol.2019.112964
G. Chen, K.J. Shah, L. Shi, P.C. Chiang, Appl. Surf. Sci. 409, 22 (2017). https://doi.org/10.1016/j.apsusc.2017.03.022
N. Fiol, M.G. Vasquez, M. Pereira, Q. Tarres, P. Mujtje, D. Aguilar, Cellulose 26, 903–916 (2019). https://doi.org/10.1007/s10570-018-2106-7
P. Liu, K. Oksman, A.P. Mathew, J. Colloid Interface Sci. 15, 175–182 (2016). https://doi.org/10.1016/j.jcis.2015.11.033
H. Ma, B.S. Hsiao, B. Chu, ACS Macro Lett. 1, 213–216 (2012). https://doi.org/10.1021/mz200047q
K. Kose, M. Mavlan, M. Nuruddin, J.P. Youngblood, Cellulose 27, 4623–4635 (2020). https://doi.org/10.1007/s10570-020-03104-x
H. Sehaqui, U.P. Larraya, P. Liu, N. Prenninger, A.P. Methew, T. Zimmermann, P. Tingaut, Cellulose 21, 2831–2844 (2014). https://doi.org/10.1007/s10570-014-0310-7
H. Wang, Y. Pei, X. Qian, X. An, Carbohydr. Polym. 236, 116030 (2020). https://doi.org/10.1016/j.carbpol.2020.116030
T. Saito, A. Isogai, Carbohydr. Polym. 61, 2 (2005). https://doi.org/10.1016/j.carbpol.2005.04.009
M. Huang, F. Chen, Z. Jiang, Y. Li, Int. J. Biol. Macromol. 62, 608–613 (2013). https://doi.org/10.1016/j.ijbiomac.2013.10.018
B. Soni, B. Mahmoud, S. Chang, E.M. Wl-Giar, E.B. Hassan, Food Packaging Shelf 17, 73–79 (2018). https://doi.org/10.1016/j.fpsl.2018.06.001
A. Mautner, Polym. Int. 69, 9 (2020). https://doi.org/10.1002/pi.5993
S. Ahankari, T. George, A. Subhedar, K.K. Kar, SPE Polymers (2020). https://doi.org/10.1002/pls2.10019
N. Mohammed, N. Grishkewich, K.C. Tam, Environ. Sci. Nano 3, 623–658 (2018). https://doi.org/10.1039/C7EN01029J
H. Voisin, L. Bergstrom, P. Liu, A.P. Mathew, Nanomaterials 7, 57 (2017). https://doi.org/10.3390/nano7030057
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Li, J., Bendi, R., Malla, R. et al. Cellulose nanofibers-based green nanocomposites for water environmental sustainability: a review. emergent mater. 4, 1259–1273 (2021). https://doi.org/10.1007/s42247-021-00300-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42247-021-00300-8
Keywords
- Cellulose nanofibers
- Water purification
- Composites
- Antibacterial activity
- Metal–organic frameworks
- Functionalization
- Film