Skip to main content
Log in

Theoretical investigations of structural, mechanical, electronic and optical properties of NaScSi alloy

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Ab initio density functional theory is employed to investigate the structural, elastic, electronic and optical properties of the half-Heusler NaScSi alloy. The lattice constants are very near to the available theoretical data. In addition, besides the GGA approximation, the modified Becke–Johnson exchange potential is also used to improve the direct X→X band gap value. Furthermore, the elastic constants and related elastic moduli confirm its stability and brittle behaviour in the type I structure. The influence of pressure on Cij constants, bulk modulus B, Cauchy pressure, Poisson ratio ν, shear modulus, B/G ratio and anisotropy factor A are analysed. Additionally, the strong absorption is extended between the visible domain and that of the ultraviolet is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Gilleßen, R. Dronskowski, A combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 30, 1290–1299 (2009)

    Article  Google Scholar 

  2. M. Gilleßen, R. Dronskowski, A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 31, 612–619 (2010)

    Google Scholar 

  3. K. Özdoğan, E. Şaşıoğlu, I. Galanakis, Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: the D03-type Heusler alloys. J. Appl. Phys. 113, 193903–193912 (2013)

    Article  Google Scholar 

  4. X. Dai, G. Liu, G.H. Fecher, C. Felser, Y. Li, H. Liu, New quarternary half metallic material CoFeMnSi. J. Appl. Phys. 105, 07E901–07E911 (2009)

    Article  Google Scholar 

  5. F. Belkharroubi, F. Khelfaoui, K. Amara, N. Marbouh, M. Ameri, Y. Si Abderrahmane, Robust half metallicity state with the hydrostatic and tetragonal distortion for a new quaternary Heusler ZrTiRhGa: FP-LAPW calculations. Phys. B Condens. Matter 557, 56–62 (2019)

    Article  CAS  Google Scholar 

  6. P.J. Webster, Heusler Alloys. Contemp. Phys. 10, 557–559 (1969)

    Article  Google Scholar 

  7. G.H. Wu, C.H. Yu, L.Q. Meng, J.L. Chen, F.M. Yang, S.R. Qi, et al., Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition Appl. Phys. Lett. 75, 2990–2999 (1999)

    CAS  Google Scholar 

  8. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, et al., Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006)

    Article  CAS  Google Scholar 

  9. R. De Groot, F. Mueller, P. Van Engen, K. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2032 (1983)

    Article  Google Scholar 

  10. M. Ayad, F. Belkharroubi, F. Z. Boufadi, M. Khorsi, M. K. Zoubir, M. Ameri, D. Bensaid, First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa. 94, 767–777 (2019)

  11. B. Fadila, M. Ameri, D. Bensaid, M. Noureddine, I. Ameri, S. Mesbah, Y. Al-Douri, Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y= Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448, 208–220 (2018)

    Article  CAS  Google Scholar 

  12. J. Wernick, G. Hull, T. Geballe, J. Bernardini, Superconductivity in ternary Heusler intermetallic compounds. J. Waszczak Mater. Lett. 2, 90–92 (1983)

    Article  CAS  Google Scholar 

  13. V. Buchelnikov, V. Sokolovskiy, Magnetocaloric effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler alloys. Phys. Met. Metallogr. 112, 633–665 (2011)

    Article  Google Scholar 

  14. A. Cherechukin, T. Takagi, M. Matsumoto, V. Buchel'Nikov, Magnetocaloric effect in Ni2+ xMn1− xGa Heusler alloys. Phys. Lett. A 326, 146–151 (2004)

    Article  CAS  Google Scholar 

  15. I. Galanakis, P. Mavropoulos, P.H. Dederichs, Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D. Appl. Phys. 39, 765–772 (2006)

    Article  CAS  Google Scholar 

  16. I. Galanakis, Surface properties of the half-and full-Heusler alloysJ. Phys. Condens. Matter. 14, 6329–6334 (2002)

    Article  CAS  Google Scholar 

  17. I. Galanakis, Orbital magnetism in the half-metallic Heusler alloys. Phys. Rev. B 71, 012413–012421 (2005)

    Article  Google Scholar 

  18. J.M. Mena, H.G. Schoberth, T. Gruhn, H. Emmerich, Ab initio study of domain structures in half-metallic CoTi1−xMnxSb and thermoelectric CoTi1−xScxSb half-Heusler alloys. J. Alloys Compd. 650, 728–740 (2015)

    Article  Google Scholar 

  19. T. Gruhn, Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Phys. Rev. B 82, 125210–125222 (2010)

    Article  Google Scholar 

  20. S. Kacimi, H. Mehnane, A. Zaoui, I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: comparative ab initio study. J. Alloys Compd. 587, 451–458 (2014)

    Article  CAS  Google Scholar 

  21. P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, J. Luitz, wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties, Techn. Univ. Wien, Austria, ISBN 3-9501031-1-2, (2001)

  22. J.C. Slater, Wave functions in a periodic potential. Phys. Rev. 51, 846–851 (1937)

    Article  CAS  Google Scholar 

  23. E. Sjöstedt, L. Nordström, D. Singh, An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15–20 (2000)

    Article  Google Scholar 

  24. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13252 (1992)

    Article  CAS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3873 (1996)

    Article  CAS  Google Scholar 

  26. F. Tran, P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 102, 226401–226412 (2009)

    Article  Google Scholar 

  27. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5196 (1976)

    Article  Google Scholar 

  28. I. Galanakis, P.H. Dederichs, Half-metallic alloys. Lect. Notes Phys. 676, 1–39 (2005)

    CAS  Google Scholar 

  29. F. Murnaghan, Proceedings of the national academy of sciences of the United States of America. 30, 244–252 (1944)

  30. X. Wang, X. Dai, H. Jia, L. Wang, X. Liu, Y. Cui, G. Liu, Topological insulating characteristic in half-Heusler compounds composed of light elements. Phys. Lett. A 378, 1662–1674 (2014)

    Article  CAS  Google Scholar 

  31. X. Wang, X. Dai, L. Wang, X. Liu, W. Wang, G. Wu, C. Tang, G. Liu, Electronic structures and magnetism of Rh3Z (Z= Al, Ga, In, Si, Ge, Sn, Pb, Sb) with DO3 structures. J. Magn. Magn. Mater. 378, 16–24 (2015)

    Article  CAS  Google Scholar 

  32. T. Charpin, A package for calculating elastic tensors of cubic phase using WIEN, Laboratory of Geometrix, F-75252 (Paris, France). (2001)

  33. M.J. Mehl, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Phys. Rev. B 47, 2493–2506 (1993)

    Article  CAS  Google Scholar 

  34. M. Born, R.D. Misra, Mathematical Proceedings of the Cambridge Philosophical Society, vol 36 (Cambridge University Press, 1940), pp. 466–473

  35. M. Born, K. Huang, Dynamical theory of crystal lattices (Clarendon press, 1954)

  36. S. Pugh, The London, Edinburgh, and Dublin. Philos. Mag. J. Sci. 45, 823–832 (1954)

    Article  CAS  Google Scholar 

  37. D. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)

    Article  CAS  Google Scholar 

  38. E. Schreiber, O.L. Anderson, N. Soga, Elastic constants and their measurement (McGraw-Hill, New York, 1973)

    Google Scholar 

  39. L. Ai, X.L. Gao, Metamaterials with negative Poisson’s ratio and non-positive thermal expansion. Compos. Struct. 162, 70–84 (2017)

    Article  Google Scholar 

  40. M. Jamal, M. Bilal, I. Ahmad, S. Jalali-Asadabadi, IRelast package. J. Alloys Compd. 735, 569–579 (2018)

    Article  CAS  Google Scholar 

  41. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928) Google Scholar 962 (1908)

    Google Scholar 

  42. M. Khan, A. Kashyap, A. Solanki, T. Nautiyal, S. Auluck, Interband optical properties of Ni3Al. Phys. Rev. B 48, 16974–16984 (1993)

    Article  CAS  Google Scholar 

  43. J.S. Toll, Causality and the dispersion relation: logical foundations. Phys. Rev. 104, 1760–1770 (1956)

    Article  Google Scholar 

  44. C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175, 1–14 (2006)

    Article  CAS  Google Scholar 

  45. M. Cardona, Optical Properties and Band Structure of SrTiO3 and BaTiO3. Phys. Rev. 140, A651–A664 (1965)

    Article  Google Scholar 

  46. P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16232 (1994)

    Article  Google Scholar 

  47. P. Chen, N.J. Podraza, X.S. Su, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D.G. Schlom, J.L. Musfeldt, Optical properties of quasi-tetragonal BiFeO3BiFeO3 thin films. Appl. Phys. Lett. 96, 131907–131912 (2010)

    Article  Google Scholar 

  48. P. Puschnig, C. Ambrosch-Draxl, Optical absorption spectra of semiconductors and insulators including electron-hole correlations: an ab initio study within the LAPW method. Phys. Rev. B 66, 165105–165112 (2002)

    Article  Google Scholar 

  49. H. Ehrenreich, M.H. Cohen, Self-consistent field approach to the many-electron problem. Phys. Rev. 115, 786–790 (1959)

    Article  Google Scholar 

  50. M. Dadsetani, A. Pourghazi, Optical properties of strontium monochalcogenides from first principles. Phys. Rev. B 73, 195102–195111 (2006)

    Article  Google Scholar 

  51. R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, M. Rabah, Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput. Mater. Sci. 38, 29–38 (2006)

    Article  CAS  Google Scholar 

  52. D. Allali, A. Bouhemadou, F. Zerarga, F. Sahnoune, Electronic and optical properties of the spinel oxides GeB2O4 (B = Mg, Zn and Cd): An Ab-Initio Study. J. Nanoelectron. Optoelectron. 14, 945–952 (2019)

    Article  CAS  Google Scholar 

  53. D. Allali, A. Bouhemadou, E.M.A.A. Safi, S. Bin-Omran, M. Chegaar, R. Khenata, A.H. Reshak, Electronic and optical properties of the SiB2O4 (B=Mg, Zn, and Cd) spinel oxides: an ab initio study with the Tran–Blaha-modified Becke–Johnson density functional. Phys. B Condens. Matter 443(2014), 24–33 (2014)

    Article  CAS  Google Scholar 

  54. J. Sun, H.-T. Wang, J. He, Y. Tian, Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys. Rev. B 71, 125132–125142 (2005)

    Article  Google Scholar 

  55. P. Ravindran, A. Delin, B. Johansson, O. Eriksson, J. Wills, Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2. Phys. Rev. B 59, 1776–1772 (1999)

    Article  CAS  Google Scholar 

  56. M. Fox, Optical properties of solids. Am. Assoc. Phys. Teach. 70, 1269–1270 (2002)

    Google Scholar 

  57. D. Singh, L. Nordström, Plane waves Pseudopotentials and the LAPW Method, pringer, New York, (2006)

  58. A. Özmen, Y. Yakar, B. Çakır, Ü. Atav, Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot. Opt. Commun. 282, 3999–4009 (2009)

    Article  Google Scholar 

  59. K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Measurement of the Optical Conductivity of Graphene. Phys. Rev. Lett. 101, 196405–196411 (2008)

    Article  Google Scholar 

  60. T. Stauber, N. Peres, A. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432–085442 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Al-Douri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkilali, W., Belkharroubi, F., Ameri, M. et al. Theoretical investigations of structural, mechanical, electronic and optical properties of NaScSi alloy. emergent mater. 4, 1465–1477 (2021). https://doi.org/10.1007/s42247-021-00221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00221-6

Keywords

Navigation