Skip to main content
Log in

First-principles calculations of electronic, elastic and thermal properties of magnesium doped with alloying elements

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

First-principles calculations have been carried out to investigate the effects of alloying elements (Zn, Li, Y and Sc) on the electronic structure, elastic and thermal properties of Mg solid solution. The calculated cohesive energies show that Mg-Sc has the highest structural stability. The calculations of the densities of states (DOS) and electronic charge density difference indicate that Mg-Y (Sc) alloys have very strong covalent bonding due to a very strong Mg p-Y(Sc) d hybridization. The bulk modulus B, shear modulus G, Young's modulus E and Poisson ratio ν are derived using Voigt-Reuss-Hill (VRH) approximation. The results show that all the alloys can exhibit ductile properties at 2.77 at% R, and Mg-Zn(Li) alloys have the better ductility and plasticity. In the end, the Debye temperature and isochoric heat capacity are also calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Potzies C, Kainer K U. Fatigue of Magnesium Alloys[J]. Adv. Eng. Mater., 2004, 6(5): 281–289

    Article  Google Scholar 

  2. Chen Y, Cong K, Ma L, et al. Development of Ternary Mg Based Alloy for Soldering of AZ31B Magnesium Alloy[J]. Materials Science and Technology, 2014, 30: 977–981

    Article  Google Scholar 

  3. Srinivasan A, Swaminathan J, Pillai U T. Effect of Combined Addition of Si and Sb on the Microstructure and Creep Properties of AZ91 Magnesium Alloy[J]. Materials Science and Engineering A, 2008, 485(1-2): 86–91

    Article  Google Scholar 

  4. Jiang B, Qiu D, Zhang M X, et al. A New Approach to Grain Refinement of an Mg-Li-Al Cast Alloy[J]. J. Alloys Compd., 2010, 492(1-2): 95–98

    Article  Google Scholar 

  5. Gao L, Chen R S, Han E H. Solid Solution Strengthening Behaviors in Binary Mg-Y Single Phase Alloys[J]. Journal of Alloys and Compound, 2009, 472: 234–240

    Article  Google Scholar 

  6. Zhang J, Wang J, Qiu X, et al. Effect of Nd on the Microstructure, Mechanical Properties and Corrosion Behavior of Die-Cast Mg-4Al-Based Alloy[J]. Journal of Alloys and Compound, 2008, 464: 556–564

    Article  Google Scholar 

  7. Gao L, Zhou J, Sun Z M, et al. Electronic Origin of the Anomalous Solid Solution Hardening of Y and Gd in Mg: A First-Principles Study[J]. Chinese Science Bulletin, 2011, 56(10): 1038–1042

    Article  Google Scholar 

  8. Ganeshan S, Shang S L, Wang Y, et al. Effect of Alloying Elements on the Elastic Properties of Mg from First-Principles Calculations[J]. Acta Materialia, 2009, 57(13): 3876–3884

    Article  Google Scholar 

  9. Chen K Y, Boyle K P. Elastic Properties, Thermal Expansion Coefficients and Electronic Structures of Mg and Mg-Based Alloys[J]. Metallurgical and Materials Transactions A, 2009, 40: 2751–2760

    Article  Google Scholar 

  10. Yang F, Fan T, Tang B Y. Effects of Y and Zn Atoms on the Elastic Properties of Mg Solid Solution from First-Principles Calculations[J]. Physica Status Solidi B, 2011, 248(12): 2809–2815

    Article  Google Scholar 

  11. Shi D M, Wen B, Melnik R. First-Principles Studies of Al-Ni Intermetallic Compounds[J]. J. Solid State Chem., 2009, 182(10): 2664–2669

    Article  Google Scholar 

  12. Fagan S B, Mota R, Baierle R J. Stability Investigation and Thermal Behavior of a Hypothetical Silicon Nanotube[J]. J. Molecular Struct., 2001, 539: 101–106

    Article  Google Scholar 

  13. Pack J D, Monkhors H J. Special Points for Brillouin-Zone Integrations[J]. Phys. Rev. B, 1977, 16: 1748–1749

    Article  Google Scholar 

  14. Perdew J P, Burke K, Ernzerh M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865–3868

    Article  Google Scholar 

  15. Monkhorst H J, Pack J D. Special Points for Brillouin Zone Integrations[J]. Phys. Rev. B, 1976, 13(12): 5188–5192

    Article  Google Scholar 

  16. Fischer T H, Almlof J. General Methods for Geometry and Wave Function Optimization[J]. J. Phys. Chem., 1992, 96(24): 9768–9744

    Article  Google Scholar 

  17. Raynor G V. The Lattice Spacing of the Primary Solid Solutions in Magnesium of the Metals of Group IIIB and Tin and Lead[J]. Proceedings of the Royal Society of London, 1942, 180: 107–121

    Article  Google Scholar 

  18. Hardie D, Parkins R N. Lattice Spacing Relationships in Magnesium Solid Solutions[J]. Philosophical Magazine, 1959, 4: 815–825

    Article  Google Scholar 

  19. Nayeb-Hashemi A A, Clark J B. Phase Diagrams of Binary Magnesium Alloys[M]. Metals Park: ASM International, 1988

    Google Scholar 

  20. Huang Z W, Zhao Y H, Hou H, et al. Electronic Structural, Elastic Properties and Thermodynamics of Mg17Al12, Mg2Si and Al2Y Phases from First-Principles Calculations[J]. Physica B, 2012, 407: 1075–1081

    Article  Google Scholar 

  21. Fu C L, Wang X D, Ye Y Y, et al. Phase Stability, Bonding Mechanism, and Elastic Constants of Mo5Si3 by First-Principles Calculation[J]. Intermetallics, 1999, 7(2): 179–184

    Article  Google Scholar 

  22. Wazzan A R, Robinson L B. Elastic Constants of Magnesium-Lithium Alloys[J]. Physical Review, 1967, 155: 586–594

    Article  Google Scholar 

  23. Hill R. The Elastic Behavior of a Crystalline Aggregate[J]. Proceeding of the Physical Society A, 1952, 65(5): 349–352

    Article  Google Scholar 

  24. Hardie D. The Elastic Properties of Magnesium Solid Solutions[J]. Acta Metallurgica, 1971, 19: 719–723

    Article  Google Scholar 

  25. Pugh S F. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals[J]. Philos. Mag., 1954, 45: 823–843

    Article  Google Scholar 

  26. Pettifor D G. Theoretical Predictions of Structure and Related Properties of Intermetallics[J]. Materials Science and Technology, 1992, 8: 345–349

    Article  Google Scholar 

  27. Mattesini M, Ahuja R, Johansson B. Cubic Hf3N4 and Zr3N4: A Class of Hard Materials[J]. Phys. Rev. B, 2003, 68(18): 184108–184112

    Article  Google Scholar 

  28. Music D, Houben A, Dronskowski R, et al. Ab Initio Study of Ductility in M2AlC (M=Ti, V, Cr)[J]. Phys. Rev. B, 2007, 75(17): 174102

    Article  Google Scholar 

  29. Lofland S E, Hettinger J D, Harrell K, et al. Elastic and Electronic Properties of Select M2AX Phases[J]. Applied Physics Letters, 2008, 84: 508–510

    Article  Google Scholar 

  30. Drulis M K, Czopnik A, Drulis H, et al. On the Heat Capacity of Ti3GeC2. Materials Science and Engineering B, 2005, 119(2): 159–163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Zhao  (赵宇宏).

Additional information

Funded by the National Natural Science Foundation of China (Nos.51574206, 51204147 and 51274175), International Cooperation Project Supported by Ministry of Science and Technology of China (No.2014DFA50320) and International Cooperation Project Supported by Shanxi Province(Nos.2013081017, 2012081013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhao, Y., Hou, H. et al. First-principles calculations of electronic, elastic and thermal properties of magnesium doped with alloying elements. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 198–203 (2018). https://doi.org/10.1007/s11595-018-1806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1806-z

Keywords

Navigation