Skip to main content
Log in

Degradable poly(ester amide)s from olive oil for biomedical applications

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Poly(ester amide)s (PEAs) are polymers with both ester and amide bonds in the polymer backbone offering a combination of desirable properties such as degradability of esters and physio-chemical properties of amides that are attractive for biomedical applications. Olive oil (OO) is known to possess anti-inflammatory properties and offers beneficial health effects. Thus, the aim of this work was to develop a novel class of resorbable PEAs from OO for biomedical applications. Cross-linked PEAs were synthesized by melt condensation followed by curing. The chain length of the diacid, molar ratio of the reactants, and curing conditions were systematically varied to yield a library of polymers with tunable properties. FTIR and 1H-NMR revealed the presence of ester and amide bonds in the polymers. Properties such as the water contact angle and storage modulus (which is directly related to the cross-linking density) increased with the increase in the chain length of the diacid as well as the curing time and with the decrease in the molar ratio of diacid to the functionalized precursor. Hydrolytic degradation studies showed that polymers had a wide range of degradation that spanned ≈ 12 to 50% in 1 week. The dye release followed the Korsmeyer-Peppas semi-empirical equation. In vitro cell studies showed that the polymers were cytocompatible. Thus, this work presents PEAs from OO that are promising resorbable biomaterials for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.A. Gunatillake, R. Adhikari, Biodegradable synthetic polymers for tissue engineering. Eur. Cell. Mater. 5, 1–16 (2003)

    Article  Google Scholar 

  2. K. Guo, C. Chu, J Biomed Mater Res B Appl Biomater 89, 491 (2009)

    Article  Google Scholar 

  3. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001)

    Article  Google Scholar 

  4. M. Vera, J. Puiggali, J. Coudane, Microspheres from new biodegradable poly(ester amide)s with different ratios of L- and D-alanine for controlled drug delivery. J. Microencapsul 23, 686–697 (2006)

    Article  Google Scholar 

  5. D.S. Katti, K.W. Robinson, F.K. Ko, C.T. Laurencin, J. Biomed. Mater. Res. B. Appl. Biomater 70, 286 (2004)

    Article  Google Scholar 

  6. K. Chatterjee, S. Lin-Gibson, W.E. Wallace, S.H. Parekh, Y.J. Lee, M.T. Cicerone, M.F. Young, C.G. Simon Jr., The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 31, 5051–5062 (2010)

    Article  Google Scholar 

  7. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  8. M.P. Sheetz, D.P. Felsenfeld, C.G. Galbraith, Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol. 8, 51–54 (1998)

    Article  Google Scholar 

  9. Y. Lemmouchi, E. Schacht, P. Kageruka, R. De Deken, B. Diarra, O. Diall, S. Geerts, Biodegradable polyesters for controlled release of trypanocidal drugs: in vitro and in vivo studies. Biomaterials 19, 1827–1837 (1998)

    Article  Google Scholar 

  10. K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999)

    Article  Google Scholar 

  11. B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 49, 832–864 (2011)

    Article  Google Scholar 

  12. A.C. Fonseca, M.H. Gil, P.N. Simoes, Biodegradable poly(ester amide)s – a remarkable opportunity for the biomedical area: review on the synthesis, characterization and applications. Prog. Polym. Sci. 39, 1291–1311 (2014)

    Article  Google Scholar 

  13. A. Díaz, R. Katsarava, J. Puiggalí, Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int. J. Mol. Sci. 15, 7064–7123 (2014)

    Article  Google Scholar 

  14. A. Rodriguez-Galan, L. Franco, J. Puiggali, degradable poly(ester amide)s for biomedical applications. Polymers 3, 65–99 (2010)

    Article  Google Scholar 

  15. S. Ghazani, D. Pink, M. Koutchekinia, J. Carney, R. Bond, W. Rakitsky, A. Marangoni, Engineering the viscosity and melting behaviour of triacylglycerol biolubricants via interesterification. RSC Adv. 5, 37180–37187 (2015)

    Article  Google Scholar 

  16. J. Toro-Vazquez, M. Charó-Alonso, Functional Properties of Proteins and Lipids. (1998)

  17. I. Wardana, A. Widodo, W. Wijayanti, Energies 11, 394 (2018)

    Article  Google Scholar 

  18. M.A. Meier, J.O. Metzger, U.S. Schubert, Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 36, 1788 (2007)

    Article  Google Scholar 

  19. A. Zlatanić, C. Lava, W. Zhang, Z.S. Petrović, Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. J. Polym. Sci. B Polym. Phys. 42, 809–819 (2004)

    Article  Google Scholar 

  20. M. Desroches, M. Escouvois, R. Auvergne, S. Caillol, B. Boutevin, From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym. Rev. 52, 38–79 (2012)

    Article  Google Scholar 

  21. V. Sharma, P. Kundu, Condensation polymers from natural oils. Prog. Polym. Sci. 33, 1199–1215 (2008)

    Article  Google Scholar 

  22. D.P. Pfister, Y. Xia, R.C. Larock, Recent advances in vegetable oil-based polyurethanes. ChemSusChem 4, 703–717 (2011)

    Article  Google Scholar 

  23. E. Kolanthai, K. Sarkar, S.R.K. Meka, G. Madras, K. Chatterjee, Copolyesters from soybean oil for use as resorbable biomaterials. ACS Sustain. Chem. Eng. 3, 880–891 (2015)

    Article  Google Scholar 

  24. S. Dutta, N. Karak, T. Jana, Evaluation of Mesua ferrea L. seed oil modified polyurethane paints. Prog. Org. Coat. 65, 131–135 (2009)

    Article  Google Scholar 

  25. J. Natarajan, Q. Dasgupta, S.N. Shetty, K. Sarkar, G. Madras, K. Chatterjee, Poly(ester amide)s from soybean oil for modulated release and bone regeneration. ACS Appl. Mater. Interfaces 8, 25170–25184 (2016)

    Article  Google Scholar 

  26. D. Yamanouchi, J. Wu, A.N. Lazar, K.C. Kent, C.-C. Chu, B. Liu, Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents. Biomaterials 29, 3269–3277 (2008)

    Article  Google Scholar 

  27. P. Karimi, A.S. Rizkalla, K. Mequanint, Versatile biodegradable poly(ester amide)s derived from α-amino acids for vascular tissue engineering. Materials 3, 2346–2368 (2010)

    Article  Google Scholar 

  28. J. Wang, C.J. Bettinger, R.S. Langer, J.T. Borenstein, Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers. Organogenesis 6, 212–216 (2010)

    Article  Google Scholar 

  29. Y. Xue, T. Yatsenko, A. Patel, D.B. Stolz, J.A. Phillippi, V. Sant, S. Sant, PEGylated poly(ester amide) elastomer scaffolds for soft tissue engineering. Polym. Adv. Technol. 28, 1097–1106 (2017)

    Article  Google Scholar 

  30. S. Ahmad, S. Ashraf, M. Alam, Studies on melamine modified polyesteramide as anticorrosive coatings from linseed oil: a sustainable resource. J. Macromol. Sci., Part A: Pure Appl. Chem. 43, 773–783 (2006)

    Article  Google Scholar 

  31. H.A. El-Wahab, M.A. El-Fattah, M. Ghazy, Synthesis and characterization of new modified anti-corrosive polyesteramide resins incorporated pyromellitimide ring for surface coating. Prog. Org. Coat. 72, 353–359 (2011)

    Article  Google Scholar 

  32. A.P. More, S.T. Mhaske, Anticorrosive coating of polyesteramide resin by functionalized ZnO- Al 2 O 3 -Fly ash composite and functionalized multiwalled carbon nanotubes. Prog. Org. Coat. 99, 240–250 (2016)

    Article  Google Scholar 

  33. F. Zafar, E. Sharmin, S. Ashraf, S. Ahmad, Ambient-cured polyesteramide-based anticorrosive coatings from linseed oil—a sustainable resource. J. Appl. Polym. Sci. 97, 1818–1824 (2005)

    Article  Google Scholar 

  34. V. Sambhy, M.M. MacBride, B.R. Peterson, A. Sen, Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J. Am. Chem. Soc. 128, 9798–9808 (2006)

    Article  Google Scholar 

  35. M.R. Shaik, M. Alam, N.M. Alandis, J. Nanomater. 16, 176 (2015)

    Google Scholar 

  36. L. Lucas, A. Russell, R. Keast, Molecular mechanisms of inflammation. Anti-Inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal. Curr. Pharm. Des. 17, 754–768 (2011)

    Article  Google Scholar 

  37. K.-Y. Chin, S. Ima-Nirwana, Olives and bone: a green osteoporosis prevention option. Int. J. Environ. Res. Public Health 13, 755 (2016)

    Article  Google Scholar 

  38. A.l. Quintero-Flórez, L. Sinausia Nieva, A. Sánchez-Ortíz, G. Beltrán, J.S. Perona, The fatty acid composition of virgin olive oil from different cultivars is determinant for foam cell formation by macrophages. J. Agric. Food Chem. 63, 6731–6738 (2015)

    Article  Google Scholar 

  39. D. Boskou, G. Blekas, M. Tsimidou, in Olive Oil (Elsevier, 2006), p. 41

  40. M. Alam, N.M. Alandis, Microwave assisted synthesis and characterization of olive oil based polyetheramide as anticorrosive polymeric coatings. Prog. Org. Coat. 75, 527–536 (2012)

    Article  Google Scholar 

  41. D.K. Saha, M. Upadhyay, P. Ghosh, Dodecylmethacrylate – olive oil copolymers as potential biodegradable pour point depressant for lubricating oil. Pet. Sci. Technol. 36, 215–221 (2018)

    Article  Google Scholar 

  42. D. Dionisi, G. Carucci, M.P. Papini, C. Riccardi, M. Majone, F. Carrasco, Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res. 39, 2076–2084 (2005)

    Article  Google Scholar 

  43. P. Saithai, J. Lecomte, E. Dubreucq, V. Tanrattanakul, Effects of different epoxidation methods of soybean oil on the characteristics of acrylated epoxidized soybean oil-co-poly(methyl methacrylate) copolymer. Express Polym Lett 7, 910–924 (2013)

    Article  Google Scholar 

  44. Z. Wang, X. Zhang, R. Wang, H. Kang, B. Qiao, J. Ma, L. Zhang, H. Wang, Synthesis and characterization of novel soybean-oil-based elastomers with favorable processability and tunable properties. Macromolecules 45, 9010–9019 (2012)

    Article  Google Scholar 

  45. H. Sudo, H.-A. Kodama, Y. Amagai, S. Yamamoto, S. Kasai, In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96, 191–198 (1983)

    Article  Google Scholar 

  46. J. Natarajan, G. Madras, K. Chatterjee, Poly(ester amide)s from poly(ethylene terephthalate) waste for enhancing bone regeneration and controlled release. ACS Appl. Mater. Interfaces 9, 28281–28297 (2017)

    Article  Google Scholar 

  47. C.J. Bettinger, J.P. Bruggeman, J.T. Borenstein, R. Langer, J. Biomed. Mater. Res. A 91, 1077 (2009)

    Article  Google Scholar 

  48. S. Dahms, H. Piechota, R. Dahiya, T. Lue, E. Tanagho, Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br. J. Urol. 82, 411–419 (1998)

    Article  Google Scholar 

  49. A. Thambyah, A. Nather, J. Goh, Mechanical properties of articular cartilage covered by the meniscus. Osteoarthr. Cartil. 14, 580–588 (2006)

    Article  Google Scholar 

  50. H. Cheng, P.S. Hill, D.J. Siegwart, N. Vacanti, A.K. Lytton-Jean, S.W. Cho, A. Ye, R. Langer, D.G. Anderson, A novel family of biodegradable poly(ester amide) elastomers. Adv. Mater. 23, H95–H100 (2011)

    Article  Google Scholar 

  51. P.A. Lips, M.J. van Luyn, F. Chiellini, L.A. Brouwer, I.W. Velthoen, P.J. Dijkstra, J. Feijen, J. Biomed. Mater. Res. A 76, 699 (2006)

    Article  Google Scholar 

  52. A.E. English, S. Mafé, J.A. Manzanares, X. Yu, A.Y. Grosberg, T. Tanaka, Equilibrium swelling properties of polyampholytic hydrogels. J. Chem. Phys. 104, 8713–8720 (1996)

    Article  Google Scholar 

  53. A. Gaivoronskii, V. Granzhan, Solubility of adipic acid in organic solvents and water. Russ. J. Appl. Chem. 78, 404–408 (2005)

    Article  Google Scholar 

  54. Q. Xia, F.-B. Zhang, G.-L. Zhang, J.-C. Ma, L. Zhao, Solubility of sebacic acid in binary water + ethanol solvent mixtures. J. Chem. Eng. Data 53, 838–840 (2008)

    Article  Google Scholar 

  55. C.J. Bettinger, J.P. Bruggeman, J.T. Borenstein, R.S. Langer, Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials 29, 2315–2325 (2008)

    Article  Google Scholar 

  56. A. Göpferich, Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996)

    Article  Google Scholar 

  57. R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas, Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 15, 25–35 (1983)

    Article  Google Scholar 

  58. P. Costa, J.M.S. Lobo, Eur. J. Pharm. Sci. 13, 123 (2001)

    Article  Google Scholar 

  59. J. Natarajan, G. Madras, K. Chatterjee, Localized delivery and enhanced osteogenic differentiation with biodegradable galactitol polyester elastomers. RSC Adv. 6, 61492–61504 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge NMR Research Centre of IISc regarding NMR analysis and Proteomics facility, Molecular Biophysics Unit, IISc, for MALDI TOF MS analysis.

Funding

Funding from the Department of Biotechnology, India (DBT), for the Bioengineering and Biodesign Initiative Phase 2 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Chatterjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilawar, S., Dasgupta, Q., Madras, G. et al. Degradable poly(ester amide)s from olive oil for biomedical applications. emergent mater. 2, 153–168 (2019). https://doi.org/10.1007/s42247-019-00032-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00032-w

Keywords

Navigation