Skip to main content
Log in

Purification performance on molten steel of novel Al2O3-based ceramic filter prepared from microporous powder and nano-Al2O3 powder

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Reticulated ceramic foam filters provide an effective way to purify molten steel by removing non-metallic inclusions. We proposed a novel strategy to improve the purification performance of Al2O3-based ceramic filters by using microporous corundum–spinel raw materials to replace dense raw materials. Three kinds of Al2O3-based ceramic filters fabricated from dense α-Al2O3 micro-powder or microporous corundum–spinel powder were selected to carry out the immersion tests with molten steel. On the one hand, the higher surface roughness of the filter skeleton prepared from microporous raw materials increased the adsorption capacity of skeleton surface on inclusions in molten steel. On the other hand, the higher apparent porosity and larger pore size of the filter skeleton were more beneficial to the penetration of molten steel in the micropores of skeleton. The reaction process at the solid–liquid interface also improved the wettability of the interface between skeleton and molten steel, resulting in a larger penetration depth and a better adsorption effect on the inclusions. In summary, the novel Al2O3-based ceramic filter prepared with microporous corundum–spinel powder and addition of 5 wt.% nano-Al2O3 powder reduced the total oxygen content of the steel from 40.2 × 10−4 to 12.7 × 10−4 wt.% by 68.4% and the Al content from 0.46 to 0.18 wt.% by 60.9% after immersion test, presenting the most excellent purification performance on molten steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Emmel, C.G. Aneziris, Ceram. Int. 38 (2012) 5165–5173.

    Article  Google Scholar 

  2. B. Ma, W. Zan, K. Liu, X. Mu, C. Deng, A. Huang, Ceram. Int. 49 (2023) 19072–19082.

    Article  Google Scholar 

  3. Y.J. Zhao, G.Q. Li, Y. Wu, C. Yuan, Z. Meng, X.X. Deng, Y. Liu, J. Iron Steel Res. Int. (2023) https://doi.org/10.1007/s42243-023-01056-7.

    Article  Google Scholar 

  4. W. Yan, Z. Chen, G. Li, S. Hong, N. Li, J. Am. Ceram. Soc. 107 (2024) 2725–2737.

    Article  Google Scholar 

  5. M. Emmel, C.G. Aneziris, F. Sponza, S. Dudczig, P. Colombo, Ceram. Int. 40 (2014) 13507–13513.

    Article  Google Scholar 

  6. W. Zan, B. Ma, Y. Cao, J. Tian, Z. Zhou, L. Wang, Z. Jiang, Ceram. Int. 49 (2023) 23567–23578.

    Article  Google Scholar 

  7. N. Li, Reaction of refractories with steel and effect on steel quality, Metallurgical Industry Press, Beijing, China, 2005.

    Google Scholar 

  8. B. Luchini, E. Storti, T. Wetzig, C. Settgast, M. Abendroth, J. Hubálková, V.C. Pandolfelli, C.G. Aneziris, J. Eur. Ceram. Soc. 39 (2019) 2760–2769.

    Article  Google Scholar 

  9. C. Voigt, B. Fankhänel, B. Dietrich, E. Storti, M. Badowski, M. Gorshunova, G. Wolf, M. Stelter, C.G. Aneziris, Metall. Mater. Trans. B. 51 (2020) 2371–2380.

    Article  Google Scholar 

  10. C. Yuan, Y. Liu, G.Q. Li, Y.S. Zou, A. Huang, J. Iron Steel Res. Int. 30 (2023) 516–524.

    Article  Google Scholar 

  11. L. Wang, Z. Zhou, W. Zan, C. Liu, G. Fu, B. Ma, Ceram. Int. 49 (2023) 37594–37603.

    Article  Google Scholar 

  12. L. Wang, B. Ma, X. Ren, C. Yu, C. Deng, C. Liu, C. Hu, Ceram. Int. 48 (2022) 25772–25780.

    Article  Google Scholar 

  13. Y. Yin, B. Ma, C. Hu, G. Liu, H. Li, C. Su, X. Ren, J. Yu, Y. Zhang, J. Yu, Int. J. Appl. Ceram. Technol. 16 (2019) 23–31.

    Article  Google Scholar 

  14. X. Liang, Y. Li, W. Yan, Q. Wang, F. Tan, Z. He, S. Sang, J. Eur. Ceram. Soc. 41 (2021) 2290–2296.

    Article  Google Scholar 

  15. W. Zan, B. Ma, J. Tang, K. Liu, Y. Cao, J. Tian, Z. Jiang, Ceram. Int. 49 (2023) 15164–15175.

    Article  Google Scholar 

  16. G. Zhang, B. Zou, X. Wang, Y. Yu, C. Huang, H. Zhu, P. Yao, H. Liu, Ceram. Int. 49 (2023) 31496–31508.

    Article  Google Scholar 

  17. B. Ma, Y. Li, G. Li, D. Liang, Ceram. Int. 41 (2015) 3237–3244.

    Article  Google Scholar 

  18. S. Bao, M. Syvertsen, A. Kvithyld, T. Engh, Trans. Nonferrous Met. Soc. China 24 (2014) 3922–3928.

    Article  Google Scholar 

  19. Y. Yang, S. Tang, Y. Wang, L. Yang, Z. Fan, Mater. Manuf. Process. 37 (2022) 1630–1641.

    Article  Google Scholar 

  20. C. Voigt, E. Jäckel, C.G. Aneziris, J. Hubálková, Adv. Eng. Mater. 15 (2013) 1197–1205.

    Article  Google Scholar 

  21. A. Demir, Acta Phys. Pol. A 134 (2018) 332–334.

    Article  Google Scholar 

  22. L.N.W. Damoah, L. Zhang, Acta Mater. 59 (2011) 896–913.

    Article  Google Scholar 

  23. P. Gehre, S. Takht Firouzeh, G. Schmidt, S. Dudczig, B. Kiefer, C.G. Aneziris, Open Ceram. 15 (2023) 100373.

  24. K.C. Goretta, R. Brezny, C.Q. Dam, D.J. Green, A.R. De Arellano-Lopéz, A. Dominguez-Rodriguez, Mater. Sci. Eng. A 124 (1990) 151–158.

    Article  Google Scholar 

  25. T. Wetzig, B. Luchini, S. Dudczig, J. Hubálková, C.G. Aneziris, Ceram. Int. 44 (2018) 18143–18155.

    Article  Google Scholar 

  26. T. Wetzig, A. Baaske, S. Karrasch, N. Brachhold, M. Rudolph, C.G. Aneziris, Ceram. Int. 44 (2018) 23024–23034.

    Article  Google Scholar 

  27. C.G. Aneziris, Adv. Eng. Mater. 15 (2013) 1167.

    Article  Google Scholar 

  28. Z. Chen, W. Yan, G. Li, S. Hong, N. Li, J. Eur. Ceram. Soc. 44 (2024) 1070–1080.

    Article  Google Scholar 

  29. Z. Chen, W. Yan, Y. Dai, S. Schafföner, B. Han, N. Li, Ceram. Int. 45 (2019) 8533–8538.

    Article  Google Scholar 

  30. Z. Chen, W. Yan, S. Schafföner, Y. Dai, Q. Wang, G. Li, J. Am. Ceram. Soc. 103 (2020) 4713–4724.

    Article  Google Scholar 

  31. W. Yan, J. Chen, N. Li, W. Qiu, Y. Wei, B. Han, Ceram. Int. 41 (2015) 515–520.

    Article  Google Scholar 

  32. Y. Huang, Z. Chen, W. Yan, Y. Dai, G. Li, Q. Wang, N. Li, Y. Li, Int. J. Appl. Ceram. Technol. 18 (2021) 100–109.

    Article  Google Scholar 

  33. Z. Chen, W. Yan, S. Schafföner, J. Zhi, N. Li, J. Eur. Ceram. Soc. 42 (2022) 5145–5152.

    Article  Google Scholar 

  34. R.E. Carter, J. Am. Ceram. Soc. 44 (1961) 116–120.

    Article  Google Scholar 

  35. L.N.W. Damoah, L. Zhang, Metall. Mater. Trans. B 41 (2010) 886–907.

    Article  Google Scholar 

  36. Z.Y. Chen, Chemical thermodynamics of refractories, Metallurgical Industry Press, Beijing, China, 2005.

    Google Scholar 

  37. R.M. German, Sintering theory, John Wiley & Sons, Inc., USA, 1996.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51974214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yan, W., Liu, Y. et al. Purification performance on molten steel of novel Al2O3-based ceramic filter prepared from microporous powder and nano-Al2O3 powder. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01230-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01230-5

Keywords

Navigation