Skip to main content
Log in

A thermodynamic model for predicting activity of CaO–SiO2–Al2O3–MgO–TiO2–V2O3–FeO slags during electric furnace smelting process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To optimize the comprehensive utilization of vanadium titanomagnetite by direct reduction-smelting processes, it is essential to acquire titanium slag with a higher TiO2 content of 45–60 wt.%. A thermodynamic model was developed based on the ion and molecule coexistence theory, specifically targeting the CaO–SiO2–Al2O3–MgO–TiO2–V2O3–FeO slag system. The impact of slag composition on the smelting of vanadium titanomagnetite was assessed, and the thermodynamic model was utilized to identify the optimal high-titanium slag. The results revealed that increasing the basicity, MgO content, and FeO content within the slag effectively suppressed the reduction of titanium and silicon oxides. Furthermore, the calculated activity coefficient of TiO2 decreased with higher basicity, MgO, and FeO levels. While an increase in basicity significantly enhanced the reduction of vanadium oxides, the effects of MgO and FeO contents on vanadium oxide reduction were comparatively less significant. Notably, higher basicity and FeO content promoted the formation of calcium titanates, whereas an elevated MgO content favored the formation of magnesium titanates. The smelting results indicated that a lower V2O3 content and higher TiO2 activity corresponded to a smaller titanium mass fraction in the iron alloy, while the opposite trend was observed for vanadium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, M.J. Tang, L.Z. Yang, G.Z. Qiu, Trans. Nonferrous Met. Soc. China 28 (2018) 2528–2537. https://doi.org/10.1016/S1003-6326(18)64899-X.

    Article  Google Scholar 

  2. Y.F. Guo, K. Liu, F. Chen, S. Wang, L.Z. Yang, D.Y. Li, Y. Zheng, J. Mater. Res. Technol. 23 (2023) 2479–2490. https://doi.org/10.1016/j.jmrt.2023.01.125.

    Article  Google Scholar 

  3. Y. Han, S.M. Kim, B.H. Go, S.J. Lee, S.K. Park, H.S. Jeon, Powder Technol. 391 (2021) 282–291. https://doi.org/10.1016/j.powtec.2021.06.024.

    Article  Google Scholar 

  4. S. Wang, G. Li, Y.F. Guo, F. Chen, J.F. Jing, J.L. Zhang, L.Z. Yang, G.Z. Qiu, J. Mater. Res. Technol. 20 (2022) 2262–2270. https://doi.org/10.1016/j.jmrt.2022.08.006.

    Article  Google Scholar 

  5. B.B. Liu, Q.Q. Chu, Y.F. Huang, G.H. Han, H. Sun, L. Zhang, Ceram. Int. 49 (2023) 10914–10927. https://doi.org/10.1016/j.ceramint.2022.11.285.

    Article  Google Scholar 

  6. J.F. Jing, S. Wang, Y.F. Guo, G. Li, F. Chen, L.Z. Yang, JOM 75 (2023) 5160–5166. .

    Article  Google Scholar 

  7. X.J. Liu, Q. Lü, S.J. Chen, Z.F. Zhang, S.H. Zhang, Y.Q. Sun, J. Iron Steel Res. Int. 22 (2015) 1009–1014. https://doi.org/10.1016/S1006-706X(15)30104-7.

    Article  Google Scholar 

  8. J.Y. Xiang, X. Wang, M.R. Yang, J. Wang, C. Shan, G.Q. Fan, G.B. Qiu, X.W. Lv, J. Mater. Res. Technol. 11 (2021) 1184–1192. https://doi.org/10.1016/j.jmrt.2021.01.111.

    Article  Google Scholar 

  9. D. Killick, D.C. Miller, J. Archaeol. Sci. 43 (2014) 239–255. https://doi.org/10.1016/j.jas.2013.12.016.

    Article  Google Scholar 

  10. R.Q. Zeng, W. Li, N. Wang, G.Q. Fu, M.S. Chu, M.Y. Zhu, Powder Technol. 376 (2020) 342–350. https://doi.org/10.1016/j.powtec.2020.08.043.

    Article  Google Scholar 

  11. Y. Shi, D.Q. Zhu, J. Pan, Z.Q. Guo, S.H. Lu, Y.X. Xue, J. Mater. Res. Technol. 19 (2022) 243–262. https://doi.org/10.1016/j.jmrt.2022.04.146.

    Article  Google Scholar 

  12. J.P. Tan, F. Wang, Z.Q. Liu, J. Baleta, B.K. Li, B.J. Zhang, J. Mater. Res. Technol. 23 (2023) 4702–4715. https://doi.org/10.1016/j.jmrt.2023.02.087.

    Article  Google Scholar 

  13. A. Borisov, L. Aranovich, Chem. Geol. 556 (2020) 119817. https://doi.org/10.1016/j.chemgeo.2020.119817.

    Article  Google Scholar 

  14. V. Espejo, M. Iwase, Metall. Mater. Trans. B 26 (1995) 257–264. https://doi.org/10.1007/BF02660967.

    Article  Google Scholar 

  15. S. Sun, S. Jahanshahi, Metall. Mater. Trans. B 31 (2000) 937–943. https://doi.org/10.1007/s11663-000-0070-7.

    Article  Google Scholar 

  16. J.L. Wang, X.C. Wen, C.F. Zhang, Trans. Nonferrous Met. Soc. China 25 (2015) 1633–1639. https://doi.org/10.1016/S1003-6326(15)63768-2.

    Article  Google Scholar 

  17. L.Q. Mao, Y.Q. Wu, L.C. Hu, Q.Q. Huang, Z.Q. Dai, W.Y. Zhang, J. Environ. Chem. Eng. 7 (2019) 103242. https://doi.org/10.1016/j.jece.2019.103242.

    Article  Google Scholar 

  18. J.B. Song, W.L. Xi, L.P. Niu, Metals 13 (2023) 734. https://doi.org/10.3390/met13040734.

    Article  Google Scholar 

  19. Y. Lin, Y.R. Yi, M.H. Fang, W.Q. Ma, W. Liu, Minerals 13 (2023) 509. https://doi.org/10.3390/min13040509.

    Article  Google Scholar 

  20. X.M. Yang, M. Zhang, G.M. Chai, J.Y. Li, Q. Liang, J. Zhang, Ironmak. Steelmak. 43 (2016) 663–687. https://doi.org/10.1179/1743281215Y.0000000032.

    Article  Google Scholar 

  21. S.C. Duan, X.L. Guo, H.J. Guo, J. Guo, Ironmak. Steelmak. 44 (2017) 168–184. https://doi.org/10.1080/03019233.2016.1198859.

    Article  Google Scholar 

  22. X.M. Yang, J.Y. Li, M. Zhang, G.M. Chai, J. Zhang, Metall. Mater. Trans. B 45 (2014) 2118–2137. https://doi.org/10.1007/s11663-014-0122-z.

    Article  Google Scholar 

  23. A. Shankar, M. Görnerup, A.K. Lahiri, S. Seetharaman, Metall. Mater. Trans. B 38 (2007) 911–915. https://doi.org/10.1007/s11663-007-9087-5.

    Article  Google Scholar 

  24. G. Gao, X.F. Shi, Z.H. Zhu, L.Z. Chang, High Temp. Mater. Process. 40 (2021) 99–107. https://doi.org/10.1515/htmp-2021-0015.

    Article  Google Scholar 

  25. J. Nakano, M. Duchesne, J. Bennett, K.S. Kwong, A. Nakano, R. Hughes, Fuel 161 (2015) 364–375. https://doi.org/10.1016/j.fuel.2014.11.008.

    Article  Google Scholar 

  26. H. Sun, J. Yang, R.H. Zhang, W.K. Yang, ISIJ Int. 62 (2022) 1078–1090. https://doi.org/10.2355/isijinternational.ISIJINT-2021-529.

    Article  Google Scholar 

  27. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, J.C. Wang, Metall. Mater. Trans. B 42 (2011) 738–770. https://doi.org/10.1007/s11663-011-9491-8.

    Article  Google Scholar 

  28. H. Itaya, T. Watanabe, M. Hayashi, K. Nagata, ISIJ Int. 54 (2014) 1067–1073. https://doi.org/10.2355/isijinternational.54.1067.

    Article  Google Scholar 

  29. Q.L. Wen, F.M. Shen, H.Y. Zhen, J.Y. Wu, X. Jiang, Q.J. Gao. ISIJ Int. 58 (2018) 792–798. https://doi.org/10.2355/isijinternational.ISIJINT-2017-735.

    Article  Google Scholar 

  30. Y.C. Guo, F.M. Shen, H.Y. Zheng, S. Wang, X. Jiang, Q.J. Gao, ISIJ Int. 61 (2021) 2724–2730. https://doi.org/10.2355/isijinternational.ISIJINT-2021-224.

    Article  Google Scholar 

  31. J.B. Chen, J.G. Li, R. Chu, Y.Q. Sun, Ironmak. Steelmak. 48 (2021) 1239–1246. https://doi.org/10.1080/03019233.2021.1958632.

    Article  Google Scholar 

  32. S. Wang, Y.F. Guo, T. Jiang, L. Yang, F. Chen, F.Q. Zheng, X.L. Xie, M.J. Tang, JOM 69 (2017) 1646–1653. https://doi.org/10.1007/s11837-017-2367-x.

    Article  Google Scholar 

  33. S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, L.Z. Yang, M.J. Tang, JOM 71 (2019) 323–328. https://doi.org/10.1007/s11837-018-2932-y.

    Article  Google Scholar 

  34. S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, L.Z. Yang, JOM 71 (2019) 329–335. https://doi.org/10.1007/s11837-018-2922-0.

    Article  Google Scholar 

  35. Y.J. Kang, D. Sichen, K. Morita, ISIJ Int. 47 (2007) 805–810. https://doi.org/10.2355/isijinternational.47.805.

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation of China on the project 52104345 were acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Wang.

Ethics declarations

Conflict of interest

Shuai Wang, Feng Chen, and Ling-zhi Yang are youth editorial board members for Journal of Iron and Steel Research International and were not involved in the editorial review or the decision to publish this article. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Jf., Wang, S., Guo, Yf. et al. A thermodynamic model for predicting activity of CaO–SiO2–Al2O3–MgO–TiO2–V2O3–FeO slags during electric furnace smelting process. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01186-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01186-6

Keywords

Navigation